精英家教网 > 初中数学 > 题目详情
17.如图1,在△ABC和△ADE中,∠BAC=∠EAD,AB=AC,AD=AE,连接CD、AE交于点F.
(1)求证:∠DCE=∠BAC;
(2)当∠BAC=∠EAD=30°,AD⊥AB时(如图2),延长DC、AB交于点G,请直接写出图中除△ABC、△ADE以外的等腰三角形.

分析 (1)如图1,先证明△ACD≌△ABE,得∠ACD=∠ABC,根据三角形内角和与平角定义得出结论;
(2)如图2,图形中有四个等腰三角形:分别是①△ACF是等腰三角形,②△ADG是等腰直角三角形,③△DEF是等腰直角三角形;④△ECD是等腰三角形;根据已知角的度数依次计算各角的度数,根据两个角相等的三角形是等腰三角形得出结论.

解答 证明:(1)如图1,∵∠BAC=∠EAD,
∴∠BAC+∠CAE=∠EAD+∠CAE,
即∠BAE=∠CAD,
∵AB=AC,AD=AE,
∴△ACD≌△ABE,
∴∠ACD=∠ABC,
∵∠BAC+∠ABC+∠ACB=180°,
∠ECD+∠ACD+∠ACB=180°,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠BAC+2∠ACB=180°,
∠ECD+2∠ACB=180°,
∴∠BAC=∠ECD;
(2)如图2,
①∵∠BAC=∠EAD=30°,
∴∠ABC=∠ACB=∠AED=∠ADE=75°,
由(1)得:∠ACD=∠ABC=75°,
∠DCE=∠BAC=30°,
∵AD⊥AB,
∴∠BAD=90°,
∴∠CAE=30°,
∴∠AFC=180°-30°-75°=75°,
∴∠ACF=∠AFC,
∴△ACF是等腰三角形,
②∵∠BCG=∠DCE=30°,∠ABC=75°,
∴∠G=45°,
在Rt△AGD中,∠ADG=45°,
∴△ADG是等腰直角三角形,
③∠EDF=75°-45°=30°,
∴∠DEF=∠DFE=75°,
∴△DEF是等腰直角三角形;
④∵∠ECD=∠EDC=30°,
∴△ECD是等腰三角形.

点评 首先掌握等腰三角形的判定方法:有两个角相等的三角形是等腰三角形,本题借助于证明两三角形全等得出对应角相等,并结合三角形的内角和定理求角的度数,正确做出判断.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.著名的海伦公式S=$\sqrt{p(p-a)(p-b)(p-c)}$ 告诉我们一种求三角形面积的方法,其中p表示三角形周长的一半,a、b、c分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm,b=4cm,c=5cm,能帮助小明求出该三角形的面积吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知二次函数顶点在x轴上,且过A(1,0),B(0,2)两点.
(1)求二次函数的关系式;
(2)若直线y=2与此二次函数交于B、C两点,求△ABC面积;
(3)在抛物线上是否存在P点,使△BPC与△ABC面积的面积相等?若存在,求P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:在Rt△ABD中,∠ABD=90°,以直角边AB为直径作圆O交AD于C,取线段BD的中点E,连接CE交AB的延长线于P.
(1)求证:CP是⊙O的切线;
(2)点M是弧$\widehat{AB}$的中点,CM交AB于点N,若AB=4,求MN•MC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.观察下列一组等式:32-12=8×1,52-32=8×2,72-52=8×3,92-72=8×4…将你发现的规律用含n(n为正整数)的式子表示出来,并运用此规律计算1052-1032

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知一次函数y=kx+3,当x=1时,y=4.
(1)求这个一次函数的关系式;
(2)求关于x的方程kx+3=6的解,并求当y≤6时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知点O是△ABC的外心,∠A=α,求∠BOC的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.观察下面的变形规律:
$\frac{1}{1×2}$=1-$\frac{1}{2}$;$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$;$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$;…解答下面的问题:
(1)若n为正整数,请你猜想$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$;
(2)求和:$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$.(注:只能用上述结论做才能给分);
(3)用上述相似的方法求和:$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{2013×2015}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图所示,在△ABC中,AB=CB,∠ABC=90°,∠CAB=∠ACB,F为AB延长线上一点,点E在BC上,且∠EAB=∠FCB.
(1)求证:Rt△ABE≌Rt△CBF;
(2)若AE平分∠BAC,求∠ACF的度数.

查看答案和解析>>

同步练习册答案