精英家教网 > 初中数学 > 题目详情

【题目】7张如图1所示的长为a,宽为b(a>b)的小长方形纸片按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,求ab满足的条件.

【答案】a=3b

【解析】

表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出ab的关系式.

左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,

AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,

AE+a=4b+PC,即AE-PC=4b-a,

∴阴影部分面积之差S=AEAF-PCCG=3bAE-aPC=3b(PC+4b-a)-aPC=(3b-a)PC+12b2-3ab,

3b-a=0,即a=3b.

故答案为:a=3b.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把下列各数分类

30.45 0911103.14

1)正整数:{  …}

2)负整数:{  …}

3)整数:{  …}

4)分数:{   …}

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣B;②∠A﹣90°;A+∠B)A﹣B)其中表示∠B余角的式子有_____.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察图,回答下列问题:

(1)甲、乙两图分别能折成什么几何体?简述它们的特征;

(2)设几何体的面数为F,顶点数为V棱数为E,请计算(1)中两个几何体的FVE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1 , y2 , 0的大小关系是( )
A.0<y1<y2
B.y1<0<y2
C.y1<y2<0
D.y2<0<y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次构造勾股数的探究性学习中,老师给出了下表:

其中为正整数,且

)观察表格,当 时,此时对应的的值能否为直角三角形三边的长?说明你的理由.

)探究 之间的关系并用含的代数式表示: __________ __________ __________

)以 为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.

(1)求证:△ABC≌△AED;
(2)当∠B=140°时,求∠BAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.

(1)若区域Ⅰ的三种瓷砖均价为300元/m2 , 面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2 , 且两区域的瓷砖总价为不超过12000元,求S的最大值;
(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等
①求AB,BC的长;
②若甲、丙两瓷砖单价之和为300元/m2 , 乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD=CDABD=ACD=90°,点EF分别在ABAC上,若ED平分∠BEF

1)求证:FD平分∠EFC

2)若EF=4AF=6AE=5,求BECF的和的长.

查看答案和解析>>

同步练习册答案