精英家教网 > 初中数学 > 题目详情

【题目】如图①,在平面直角坐标系中,点Ax轴上,直线OC上所有的点坐标,都是二元一次方程的解,直线AC上所有的点坐标,都是二元一次方程的解,过Cx轴的平行线,交y轴与点B

1)求点ABC的坐标;

2)如图②,点MN分别为线段BCOA上的两个动点,点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒15个单位长度的速度向右运动,设运动时间为t秒,且0t4,试比较四边形MNAC的面积与四边形MNOB的面积的大小.

【答案】1;(2)见解析.

【解析】

1)令中的 ,求出相应的x的值,即可得到A的坐标,将方程和方程联立成方程组,解方程组即可得到C的坐标,进而可得到B的坐标;

2)分别利用梯形的面积公式表示出四边形MNAC的面积与四边形MNOB的面积,然后根据t的范围,分情况讨论即可.

1)令,则,解得

解得

轴,

∴点B的纵坐标与点C的纵坐标相同,

2

∵点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,

时,即时,

时,即时,

时,即时,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E为CD上一点,DE:EC=2:3,连接AE,BE,BD,且AE,BD交于点F,则SDEF:SEBF:SABF=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(11),(21),(22),(31),(32),(33), 则第 200 个点的横坐标为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数y= x2﹣2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且SAMO:S四边形AONB=1:48.

(1)求直线AB和直线BC的解析式;
(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+ BH的值最小,求点H的坐标和GH+ BH的最小值;
(3)如图2,直线AB上有一点K(3,4),将二次函数y= x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K是直角三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).
(1)A,B两种花草每棵的价格分别是多少元?
(2)若购买A,B两种花草共31棵,且B种花草的数量少于A种花草的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年的随机抽取了部分学生的鞋号,绘制了统计图A和图B,请根据相关信息,解答下列问题:

1)本次随机抽样的学生数是多少?A值是多少?

2)本次调查获取的样本数据的众数和中位数各是多少?

3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:
①∠ABN=60°;②AM=1;③QN= ;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是
其中正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为创建美丽乡村,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.

若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?

若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在扇形OAB中,∠AOB=90°,半径OA=2 ,将扇形OAB沿过点B的直线折叠,点O恰好落在 上的点D处,折痕交OA于点C,则阴影部分的面积是

查看答案和解析>>

同步练习册答案