【题目】为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.
若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?
若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?
科目:初中数学 来源: 题型:
【题目】如图,直线OC、BC的函数关系式分别是y1=x和y2=﹣2x+6,直线BC与x轴交于点B,直线BA与直线OC相交于点A.
(1)当x取何值时y1>y2?
(2)当直线BA平分△BOC的面积时,求点A的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,点A在x轴上,直线OC上所有的点坐标
,都是二元一次方程
的解,直线AC上所有的点坐标
,都是二元一次方程
的解,过C作x轴的平行线,交y轴与点B.
(1)求点A、B、C的坐标;
(2)如图②,点M、N分别为线段BC,OA上的两个动点,点M从点C以每秒1个单位长度的速度向左运动,同时点N从点O以每秒1.5个单位长度的速度向右运动,设运动时间为t秒,且0<t<4,试比较四边形MNAC的面积与四边形MNOB的面积的大小.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:
![]()
①EF=BE+CF;
②∠BOC=90°+
∠A;
③点O到△ABC各边的距离相等;
④设OD=m,AE+AF=n,则
.
其中正确的结论是____.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知某项工程由甲、乙两队合做12天可以完成,共需工程费用27720元.乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形
中,
为平面直角坐标系的原点,点
的坐标为
,点
的坐标为
且
满足
,点
在第一象限内,点
从原点出发,以每秒
个单位长度的速度沿着
的线路移动.
求点
的坐标为 ;当点
移动
秒时,点
的坐标为
在移动过程中,当点
移动
秒时,求
的面积.
在
的条件下,坐标轴上是否存在点
,使
的面积与
的面积相等,若存在,求点
的坐标;若不存在,说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把抛物线y=
x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=
x2交于点Q,则图中阴影部分的面积为 . ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,a∥b,则∠1+∠2=
(2)如图2,AB∥CD,则∠1+∠2+∠3= ,并说明理由
(3)如图3,a∥b,则∠1+∠2+∠3+∠4=
(4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n= (直接写出你的结论,无需说明理由)![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,
中,
,
,点
、
在边
上,且
.
![]()
(1)如图
,当
时,将
绕点
顺时针旋转
到
的位置,连接
,
①求
的度数;
②求证:
;
(2)如图
,当
时,猜想
、
、
的数量关系,并说明理由;
(3)如图
,当
,
,
时,请直接写出
的长为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com