精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠ABC和∠ACB的平分线相交于点O,过点OEFBCABE,交ACF,过点OODACD,下列四个结论:

EF=BE+CF

②∠BOC=90°+A

③点OABC各边的距离相等;

④设OD=mAE+AF=n,则

其中正确的结论是____.(填序号)

【答案】②③

【解析】

由在△ABC中,∠ABC∠ACB的平分线相交于点O,根据角平分线的定义与三角形的内角和定理,即可求出②∠BOC=90°+A正确;由平行线的性质和角平分线的定义可得△BEO△CFO是等腰三角形可得①EF=BE+CF正确;由角平分线的性质得出点O△ABC各边的距离相等,故③正确;由角平分线定理与三角形的面积求法,设OD=mAE+AF=n,△AEF的面积=错误.

△ABC中,∠ABC∠ACB的平分线相交于点O

∠OBC=ABC∠OCB=ACB,∠A+ABC+ACB=180°

∠OBC+OCB=90°-A

∠BOC=180°-∠OBC+OCB=90°,故②∠BOC=90°+A正确;

△ABC中,∠ABC∠ACB的平分线相交于点O

∴∠OBC=EOB∠OCB=∠OCF

EFBC

∠OBC=EOB∠OCB=∠FOC

EOB=∠OBE,FOC=∠OCF

∴BE=OE,CF=OF,

∴EF=OE+OF=BE+CF

即①EF=BE+CF正确;

过点OOMABM,作ONBC于点N,连接AO

∵在△ABC中,∠ABC∠ACB的平分线相交于点O

ON=OD=OM=m,即OABC各边的距离相等正确;

SAEF=SAOE+ SAOF=AE·OM+AF·OD=OD·AE+AF=mn,故④错误;

故选①②③

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,∠BAD=60°.

(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;

(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MNAD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数y= x2﹣2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作轴的垂线,垂足为N,且SAMO:S四边形AONB=1:48.

(1)求直线AB和直线BC的解析式;
(2)点P是线段AB上一点,点D是线段BC上一点,PD∥x轴,射线PD与抛物线交于点G,过点P作PE⊥x轴于点E,PF⊥BC于点F.当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+ BH的值最小,求点H的坐标和GH+ BH的最小值;
(3)如图2,直线AB上有一点K(3,4),将二次函数y= x2﹣2x+1沿直线BC平移,平移的距离是t(t≥0),平移后抛物线上点A,点C的对应点分别为点A′,点C′;当△A′C′K是直角三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年的随机抽取了部分学生的鞋号,绘制了统计图A和图B,请根据相关信息,解答下列问题:

1)本次随机抽样的学生数是多少?A值是多少?

2)本次调查获取的样本数据的众数和中位数各是多少?

3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:
①∠ABN=60°;②AM=1;③QN= ;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是
其中正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=x+k和双曲线y= (k为正整数)交于A,B两点.

(1)当k=1时,求A、B两点的坐标;
(2)当k=2时,求△AOB的面积;
(3)当k=1时,△OAB的面积记为S1 , 当k=2时,△OAB的面积记为S2 , …,依此类推,当k=n时,△OAB的面积记为Sn , 若S1+S2+…+Sn= ,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为创建美丽乡村,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.

若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?

若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.

(1)求证:BO=DO;

(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,过点A引射线AH,交边CD于点H(H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AEBCE,延长EGCDF

(感知)(1)如图①,当点H与点C重合时,猜想FGFD的数量关系,并说明理由.

(探究)(2)如图②,当点H为边CD上任意一点时,(1)中结论是否仍然成立?请说明理由.

(应用)(3)在图②中,当DF=3CE=5时,直接利用探究的结论,求AB的长.

查看答案和解析>>

同步练习册答案