精英家教网 > 初中数学 > 题目详情

【题目】某校要举办国庆联欢会,主持人站在舞台的黄金分割点处最自然得体.如图,若舞台AB的长为20m,C为AB的一个黄金分割点(AC<BC),则AC的长为(结果精确到0.1m)( )

A.6.7m
B.7.6m
C.10m
D.12.4m

【答案】B
【解析】∵C为AB的一个黄金分割点,

∴BC= AB≈12.4cm,

∴AC=20﹣12.4=7.6cm,

所以答案是:B.


【考点精析】解答此题的关键在于理解直线、射线、线段的相关知识,掌握直线射线与线段,形状相似有关联.直线长短不确定,可向两方无限延.射线仅有一端点,反向延长成直线.线段定长两端点,双向延伸变直线.两点定线是共性,组成图形最常见,以及对代数式求值的理解,了解求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】先化简,再求值:a+,其中a=1007.如图是小亮和小芳的解答过程.

(1)_________的解法是错误的;

(2)错误的原因在于未能正确地运用二次根式的性质:_________

(3)先化简,再求值:a+2,其中a=-2007.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C在⊙O上,∠CAB的平分线交⊙O于点D,过点D作AC的垂线交AC的延长线于点E,连接BC交AD于点F.

(1)猜想ED与⊙O的位置关系,并证明你的猜想;
(2)若AB=6,AD=5,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,在△ABC中,∠DBC与∠ECB分别为△ABC的两个外角,若∠A60°,∠DBC+ECB多少度;

2)如图2,在△ABC中,BPCP分别平分外角∠DBC、∠ECB,∠P与∠A有怎样的数量关系?为什么?

3)如图3,在四边形ABCD中,BPCP分别平分外角∠EBC、∠FCB,∠P与∠A+D有怎样的数量关系?为什么?

4)如图4,在五边形ABCDE中,BPCP分别平分外角∠NBC、∠MCB,∠P与∠A+D+E有怎样的数量关系?(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下列解题过程,然后回答问题:

解方程:

解:①当≥0时,原方程可化为: ,解得

②当<0时,原方程可化为: ,解得

所以原方程的解是

(1)解方程:

(2)探究:当为何值时,方程 ①无解;②只有一个解;③有两个解。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,与x轴的一个交点为(1,0),与y轴的交点为(0,3),则方程ax2+bx+c=0(a≠0)的解为( )

A.x=1
B.x=﹣1
C.x1=1,x2=﹣3
D.x1=1,x2=﹣4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县为了落实中央的强基惠民工程计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成若乙队单独施工则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15那么余下的工程由甲队单独完成还需5

1)这项工程的规定时间是多少天?

2)已知甲队每天的施工费用为6500乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读解题过程,回答问题.

如图,OC在∠AOB,AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.

:O点作射线OM,使点M,O,A在同一直线上.

因为∠MOD+BOD=90°,BOC+BOD=90°,所以∠BOC=MOD,

所以∠AOD=180°-BOC=180°-30°=150°.

(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?

(2)如果∠AOB=DOC=x°,AOD=y°,求∠BOC的度数.

查看答案和解析>>

同步练习册答案