【题目】如图,抛物线y=ax2-6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在X轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.
()分别求出直线AB和抛物线的函数表达式;
()设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值;
()如图2,在()条件下,将线段OE绕点O逆时针旋转得到OE',旋转角为α(0°<α<90°),连接E'A、E'B.
①在x轴上找一点Q,使△OQE'∽△OE'A,并求出Q点的坐标;
②求BE'+AE'的最小值.
【答案】(1); ;(2)4;(3)①,②.
【解析】分析:(1)把点A(8,0)代入抛物线y=ax-6ax+6,可求得a的值,从而可得到抛物线的解析式,然后求得点A和点B的坐标,最后利用待定系数法可求得直线AB的解析式;
(2)E(m,0),则N(m,-m+6),P(m, +6),然后证明△ANE∽△ABO,依据相似三角形的性质可求得AN的长,接下来,再证明△NMP∽△NEA,然后依据相似三角形的性质可得到,从而可求得PM=12-m,然后依据PM=m+3m,然后列出关于m的方程求解即可;
(3)①在(2)的条件下,m=4,则OE′=OE=4,然后再证明△OQE′∽△OE′A,依据相似三角形的性质可得到,从而可求得OQ的值,于是可得到点Q的坐标;
②由①可知,当Q为(2,0)时,△OQE′∽△OE′A,且相似比为,于是得到BE′+AE′=BE′+QE′,当点B、Q、E′在一条直线上时,BE′+QE′最小,最小值为BQ的长.
本题解析:
()把点代入抛物线
得,
∴, ,
∴与轴交点,令,
得,
∴.
设为过, ,
∴,
∴.
()∵过作轴垂线交于,交抛物线于,
∵,
∴, ,
∵,
∴,
∴,∴,
∴,
∵,
∴,
又∵,
∴,
∵,
∴,∴,
∵,
∴
,
,
,
, ,
∵,
∴.
()①在()的条件下, ,∴,
设,∵旋转,∴,
若,
则,
∵,
∴,
∴,∴,
∴.
②由①可知,当为时,
,且相似比为,
∴,
∴,
∴当旋转到所在直线上时, 最小,即为长度,
∵, ,
∴,
∴的最小值为.
科目:初中数学 来源: 题型:
【题目】 如图,在平面直角坐标系中直线y=x﹣2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).
(1)求反比例函数的关系式;
(2)将直线y=x﹣2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.
组别 | 正确字数x | 人数 |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根据以上信息解决下列问题:
(1)在统计表中,m= ,n= ,并补全条形统计图.
(2)扇形统计图中“C组”所对应的圆心角的度数是 .
(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A点坐标为(5,0),直线y=kx+b(b>0)与y轴交于点B,∠BCA=60°,连接AB,∠α=105°,则直线y=kx+b的表达式为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了增强环境保护意识,在环保局工作人员指导下,若干名“环保小卫士” 组成了“控制噪声污染”课题学习研究小组.在“世界环境日”当天,该小组抽样 调查了全市 40 个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行
处理(设所测数据均为正整数),得频数分布表如下:
组别 | 噪声声级分组 | 频数 | 频率 |
1 | 44.5~59.5 | 4 | 0.1 |
2 | 59.5~74.5 | a | 0.2 |
3 | 74.5~89.5 | 10 | 0.25 |
4 | 89.5~104.5 | b | c |
5 | 104.5~119.5 | 6 | 0.15 |
合计 | 40 | 1.00 |
根据表中提供的信息解答下列问题:
(1)频数分布表中的a= , b= , c= ;
(2)补充完整频数分布直方图;
(3)如果全市共有 300 个测量点,那么在这一时刻噪声声级小于 75dB 的测量点约有多少个?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和爸爸周末到湿地公园进行锻炼,两人同时从家出发,匀速骑共享单车到达公园入口,然后一同匀速步行到达驿站,到达驿站后小明的爸爸立即又骑共享单车按照来时骑行速度原路返回,在公园入口处改为步行,并按来时步行速度原路回家,小明到达驿站后逗留了10分钟之后骑车回家,爸爸在锻炼过程中离出发地的路程与出发的时间的函数关系如图.
(1)图中m=_____,n=_____;(直接写出结果)
(2)小明若要在爸爸到家之前赶上,问小明回家骑行速度至少是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF=.其中正确的有( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com