精英家教网 > 初中数学 > 题目详情

【题目】某兴趣小组用仪器测测量湛江海湾大桥主塔的高度.如图,在距主塔从AE60米的D处.用仪器测得主塔顶部A的仰角为68°,已知测量仪器的高CD=1.3米,求主塔AE的高度(结果精确到0.1米)
(参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)

【答案】解:根据题意得:在Rt△ABC中,AB=BCtan68°≈60×2.48=148.8(米),
∵CD=1.3米,
∴BE=1.3米,
∴AE=AB+BE=148.8+1.3=150.1(米).
∴主塔AE的高度为150.1米
【解析】由题意即可得:在Rt△ABC中,AB=BCtan68°,又由BE=CD=1.3米,即可求得主塔AE的高度.
【考点精析】本题主要考查了关于仰角俯角问题的相关知识点,需要掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且∠DCE=∠B,那么下列说法中,错误的是(

A.△ADE∽△ABC
B.△ADE∽△ACD
C.△ADE∽△DCB
D.△DEC∽△CDB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.

(1)求抛物线的解析式;
(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣ (t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一座抛物线形拱桥,校下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米.

(1)在如图的坐标系中,求抛物线的表达式;
(2)若洪水到来是水位以0.2米/时的速度上升,从正常水位开始,再过几小时能到达桥面?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF. 求证:

(1)△ABE≌△CDF;
(2)四边形BFDE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D.
(1)求证:AD平分∠BAC;
(2)若BE=2,BD=4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:

分数段

频数

频率

60≤x<70

30

0.1

70≤x<80

90

n

80≤x<90

m

0.4

90≤x≤100

60

0.2

请根据以上图表中提供的信息,解答下列问题:

(1)本次调查的样本容量为
(2)在表中:m= , n=
(3)补全频数分布直方图;
(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在分数段内;
(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学组织学生进行“低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成A、B、C、D、E五个等级,并绘制如图的统计图(不完整)统计成绩.若扇形的半径为2cm,则C等级所在的扇形的面积是cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.

(1)求证:△ABC≌△AED;
(2)当∠B=140°时,求∠BAE的度数.

查看答案和解析>>

同步练习册答案