精英家教网 > 初中数学 > 题目详情

【题目】有一座抛物线形拱桥,校下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米.

(1)在如图的坐标系中,求抛物线的表达式;
(2)若洪水到来是水位以0.2米/时的速度上升,从正常水位开始,再过几小时能到达桥面?

【答案】
(1)解:设所求抛物线的解析式为y=ax2

设D(5,b),则B(10,b﹣3),

把D、B的坐标分别代入y=ax2得: ,解得

∴抛物线的解析式为y=﹣ x2


(2)解:∵b=﹣1,∴拱桥顶O到CD的距离为1,

∴(1+3)÷0.2=20(小时),

所以再过20小时到达拱桥顶


【解析】(1)设所求抛物线的解析式为y=ax2 . 把D(5,b),则B(10,b﹣3)代入解方程组即可.(2)根据时间=路程÷速度计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.

(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b),(m≠1的实数).
其中正确的结论有(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,抛物线y=ax2+2ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组用仪器测测量湛江海湾大桥主塔的高度.如图,在距主塔从AE60米的D处.用仪器测得主塔顶部A的仰角为68°,已知测量仪器的高CD=1.3米,求主塔AE的高度(结果精确到0.1米)
(参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组用仪器测测量湛江海湾大桥主塔的高度.如图,在距主塔从AE60米的D处.用仪器测得主塔顶部A的仰角为68°,已知测量仪器的高CD=1.3米,求主塔AE的高度(结果精确到0.1米)
(参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD四边的中点分别为E,F,G,H,对角线AC与BD相交于点O,若四边形EFGH的面积是3,则四边形ABCD的面积是(
A.3
B.6
C.9
D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶总D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.
(结果精确到0.1m。参考数据:tan20°≈0.36,tan18°≈0.32)

(1)求∠BCD的度数.
(2)求教学楼的高BD

查看答案和解析>>

同步练习册答案