精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且∠DCE=∠B,那么下列说法中,错误的是(

A.△ADE∽△ABC
B.△ADE∽△ACD
C.△ADE∽△DCB
D.△DEC∽△CDB

【答案】C
【解析】解:∵DE∥BC,∴△ADE∽△ABC,∠BCD=∠CDE,∠ADE=∠B,∠AED=∠ACB,
∵∠DCE=∠B,
∴∠ADE=∠DCE,
又∵∠A=∠A,
∴△ADE∽△ACD;
∵∠BCD=∠CDE,∠DCE=∠B,
∴△DEC∽△CDB;
∵∠B=∠ADE,
但是∠BCD<∠AED,且∠BCD≠∠A,
∴△ADE与△DCB不相似;
正确的判断是A、B、D,错误的判断是C;
故选:C.
由相似三角形的判定方法得出A、B、D正确,C不正确;即可得出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:

(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?
(2)小敏几点几分返回到家?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以C为圆心,5为半径的圆上,连结PA,PB.若PB=4,则PA的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:
(1)x2+3x﹣2=0
(2)(x+8)(x+1)=﹣12.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,AD∥BC,AD= BC,点M是边BC的中点, = =

(1)填空: = = . (结果用 表示).
(2)直接在图中画出向量3 + .(不要求写作法,但要指出图中表示结论的向量)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=4,则AD的长为(

A.2
B.3
C.3
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.

(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组用仪器测测量湛江海湾大桥主塔的高度.如图,在距主塔从AE60米的D处.用仪器测得主塔顶部A的仰角为68°,已知测量仪器的高CD=1.3米,求主塔AE的高度(结果精确到0.1米)
(参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)

查看答案和解析>>

同步练习册答案