精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在梯形ABCD中,AD∥BC,AD= BC,点M是边BC的中点, = =

(1)填空: = = . (结果用 表示).
(2)直接在图中画出向量3 + .(不要求写作法,但要指出图中表示结论的向量)

【答案】
(1) ;﹣
(2)解:如图所示,连结AC, 就是所求作的向量.


【解析】解:(1)∵在梯形ABCD中,AD∥BC,AD= BC, = ,∴ =3 =3
∵点M是边BC的中点,
= =
=﹣ =﹣( + )=﹣
所以答案是: ;﹣
【考点精析】根据题目的已知条件,利用梯形的定义的相关知识可以得到问题的答案,需要掌握一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:
(1)2﹣1+sin30°﹣|﹣2|;
(2)(﹣1)0﹣|3﹣π|+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点.

(1)若四边形OABC为矩形,如图1,
①求点B的坐标;
②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;
(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F.若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).

(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是抛物线对称轴上的一个动点,当CM+AM的值最小时,求M的坐标;
(4)在线段BC下方的抛物线上有一动点P,求△PBC面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D、E分别在边AB、AC上,如果DE∥BC,且∠DCE=∠B,那么下列说法中,错误的是(

A.△ADE∽△ABC
B.△ADE∽△ACD
C.△ADE∽△DCB
D.△DEC∽△CDB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCD的边长为4,点E为BC的中点,点P为AB上一动点,沿PE翻折△BPE得到△FPE,直线PF交CD边于点Q,交直线AD于点G,联接EQ.

(1)如图,当BP=1.5时,求CQ的长;
(2)如图,当点G在射线AD上时,BP=x,DG=y,求y关于x的函数关系式,并写出x的取值范围;
(3)延长EF交直线AD于点H,若△CQE与△FHG相似,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司研发了一款成本为60元的保温饭盒,投放市场进行试销售,按物价部门规定,其销售单价不低于成本,但销售利润不高于65%,市场调研发现,保温饭盒每天的销售数量y(个)与销售单价x(元)满足一次函数关系;当销售单价为70元时,销售数量为160个;当销售单价为80元时,销售数量为140个(利润率=
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,公司每天获得利润最大,最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,则下列结论:①abc<0,②b<a+c,③4a+2b+c>0,④2c<3b,⑤a+b<m(am+b)(m≠1)中正确的是(

A.②④⑤
B.①②④
C.①③④
D.①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D.
(1)求证:AD平分∠BAC;
(2)若BE=2,BD=4,求⊙O的半径.

查看答案和解析>>

同步练习册答案