20£®Èçͼ1£¬ÔÚÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßC£ºy=$\frac{1}{2}$£¨x-3£©2+3ÓëÖ±Ïßy=kx+b£¨k¡Ù0£©ÏཻÓÚM¡¢NÁ½µã£¬µãP£¨3£¬t£©ÊÇxÖáÏ·½Ò»µã£¬ÇÒÖ±Ïßx=3ƽ·Ö¡ÏMPN
£¨1£©Ì½¾¿Óë²ÂÏ룺µ±t=-1ʱ
¢Ù̽¾¿£ºÈ¡µãM£¨1£¬5£©Ê±£¬µãNµÄ×ø±êΪ£¨7£¬11£©£¬Ö±½Óд³öÖ±ÏßMNµÄ½âÎöʽy=x=4£»
È¡µã£¨6£¬$\frac{15}{2}$£©£¬Ö±½Óд³öÖ±ÏßMNµÄ½âÎöʽΪy=$\frac{1}{6}$x+$\frac{13}{2}$£»
¢Ú²ÂÏ룺¶ÔÓÚP£¨3£¬t£©£¬ÎÒÃDzÂÏëÖ±ÏßMN±Ø¾­¹ýÒ»¸ö¶¨µãQ£¬Æä×ø±êΪ£¨3£¬6-t£©£¬²¢Ö¤Ã÷ÄãµÄ²ÂÏ룻
£¨2£©Ó¦ÓàÈçͼ2£¬µ±t=-3ʱ£¬Ö±ÏßMN¾­¹ýÔ­µã£¬ÔÚÅ×ÎïÏßÉÏ´æÔÚÒ»µãE£¬Ê¹S¡÷EMN=$\frac{1}{2}$S¡÷PMN£¬²¢Ö±½Óд³öËùÓзûºÏÌõ¼þµÄEµãµÄ×ø±ê£®

·ÖÎö £¨1£©¢Ù¸ù¾ÝµãM¡¢NµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣮
¢Ú²ÂÏëQ£¨3£¬6-t£©£®ÉèÖ±ÏßMNµÄ½âÎöʽ£ºy=kx+b£¨k¡Ù0£©£¬ÓÉ$\left\{\begin{array}{l}{y=kx+b}\\{y=\frac{1}{2}£¨x-3£©^{2}+3}\end{array}\right.$µÃx2-£¨2k+6£©x+15-2b=0¿ÉµÃxM+xN=2k+6£¬xM•xN=15-2b£¬ÓÉtan¡ÏMPQ=tan¡ÏNPQ£¬µÃ$\frac{3-{x}_{M}}{{y}_{M}-t}$=$\frac{{x}_{N}-3}{{y}_{N}-t}$£¬»¯¼òµÃ12k-2kb-2kt-6k2=0£¬ÒòΪk¡Ù0ËùÒÔ6-b-t-3k=0£¬ËùÒÔb=6-t-3k£¬ËùÒÔy=kx+6-t-3k=k£¨x-3£©+6-t£¬Óɴ˼´¿ÉÅж¨¹ý¶¨µãQ£¨3£¬6-t£©£®
£¨2£©ÓÉÌâÒ⣬Q£¨3£¬9£©£¬Ö±ÏßMN¾­¹ý£¨0£¬0£©£¬Q£¨3£¬9£©£¬¿ÉµÃÖ±ÏßMNµÄ½âÎöʽΪy=3x£¬¹ýP×÷PG¡ÎMN½»yÖáÓÚG£¬ÔòÖ±ÏßPGµÄ½âÎöʽΪy=3x-12£¬
È¡OGµÄÖеãF£¨0£¬-6£©£¬H£¨0£¬6£©£¬¹ýµãF×÷MNµÄƽÐÐÏß½»Å×ÎïÏßÓÚE1¡¢E2£¬´Ëʱ¡÷EMNµÄÃæ»ý=$\frac{1}{2}$¡÷PMNµÄÃæ»ý£¬Ö±ÏßEF½âÎöʽΪy=3x-6£¬ÓÉ$\left\{\begin{array}{l}{y=3x-6}\\{y=\frac{1}{2}£¨x-3£©^{2}+3}\end{array}\right.$½â·½³Ì×é¿ÉµÃµãE1¡¢E2£¬µÄ×ø±ê£¬Í¬·¨¿ÉµÃE3¡¢E4µÄ×ø±ê£®

½â´ð ½â£º£¨1£©¢ÙÉèÖ±ÏßMNµÄ½âÎöʽΪy=kx+b£¬
°ÑM£¨1£¬5£©£¬N£¨7£¬11£©µÄ×ø±ê´úÈëµÃµ½$\left\{\begin{array}{l}{k+b=5}\\{7k+b=11}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=1}\\{b=4}\end{array}\right.$£¬
¡àÖ±ÏßMNµÄ½âÎöʽΪy=x+4£®
¹Ê´ð°¸Îªy=x+4£®
¡ßÖ±Ïßx=3ƽ·Ö¡ÏMPN£¬
¡àµã£¨6£¬$\frac{15}{2}$£©¹ØÓÚÖ±Ïßx=3µÄ¶Ô³ÆµãÔÚÅ×ÎïÏßÉÏ£¬
¼´£¨0£¬$\frac{15}{2}$£©ÔÚÅ×ÎïÏßÉÏ£¬Ö±ÏßAP¾­¹ýµã£¨0£¬$\frac{15}{2}$£©£¬
¡àÖ±ÏßPMµÄ½âÎöʽΪy=-$\frac{17}{6}$x+$\frac{15}{2}$£¬
ÓÉ$\left\{\begin{array}{l}{y=-\frac{17}{6}x+\frac{15}{2}}\\{y=\frac{1}{2}£¨x-3£©^{2}+3}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=0}\\{y=\frac{15}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{59}{9}}\end{array}\right.$£¬
¡àM£¨$\frac{1}{3}$£¬$\frac{59}{9}$£©£¬N£¨6£¬$\frac{15}{2}$£©£¬
¡àÖ±ÏßMNµÄ½âÎöʽΪy=$\frac{1}{6}$x+$\frac{13}{2}$£®
¹Ê´ð°¸Îªy=$\frac{1}{6}$x+$\frac{13}{2}$£®

¢Ú²ÂÏëQ£¨3£¬6-t£©£®ÀíÓÉÈçÏ£¬
Ö¤Ã÷£ºÉèÖ±ÏßMNµÄ½âÎöʽ£ºy=kx+b£¬£¨k¡Ù0£©£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+b}\\{y=\frac{1}{2}£¨x-3£©^{2}+3}\end{array}\right.$µÃx2-£¨2k+6£©x+15-2b=0
¡àxM+xN=2k+6£¬xM•xN=15-2b£¬
ÓÉtan¡ÏMPQ=tan¡ÏNPQ£¬µÃ
$\frac{3-{x}_{M}}{{y}_{M}-t}$=$\frac{{x}_{N}-3}{{y}_{N}-t}$£¬»¯¼òµÃ12k-2kb-2kt-6k2=0£¬
¡ßk¡Ù0
¡à6-b-t-3k=0£¬
¡àb=6-t-3k£¬
¡ày=kx+6-t-3k=k£¨x-3£©+6-t£¬
¡àQ£¨3£¬6-t£©£®
¹Ê´ð°¸Îª£¨3£¬6-t£©£®

£¨2£©Èçͼ2ÖУ¬

ÓÉÌâÒ⣬Q£¨3£¬9£©£¬Ö±ÏßMN¾­¹ý£¨0£¬0£©£¬Q£¨3£¬9£©£¬
¡àÖ±ÏßMNµÄ½âÎöʽΪy=3x£¬
¹ýP×÷PG¡ÎMN½»yÖáÓÚG£¬ÔòÖ±ÏßPGµÄ½âÎöʽΪy=3x-12£¬
È¡OGµÄÖеãF£¨0£¬-6£©£¬H£¨0£¬6£©£¬
¹ýµãF×÷MNµÄƽÐÐÏß½»Å×ÎïÏßÓÚE1¡¢E2£¬´Ëʱ¡÷EMNµÄÃæ»ý=$\frac{1}{2}$¡÷PMNµÄÃæ»ý£¬
Ö±ÏßEF½âÎöʽΪy=3x-6£¬
ÓÉ$\left\{\begin{array}{l}{y=3x-6}\\{y=\frac{1}{2}£¨x-3£©^{2}+3}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=9}\\{y=21}\end{array}\right.$£¬
¡àE1£¨9£¬21£©£¬E2£¨3£¬3£©£¬
¹ýµãH×÷MNµÄƽÐÐÏߣ¬ÓëÅ×ÎïÏß½»ÓÚµãE3¡¢E4£¬´Ëʱ´Ëʱ¡÷EMNµÄÃæ»ý=$\frac{1}{2}$¡÷PMNµÄÃæ»ý£¬
Ö±ÏßEHµÄ½âÎöʽΪy=3x+6£¬
ÓÉ$\left\{\begin{array}{l}{y=3x+6}\\{y=\frac{1}{2}£¨x-3£©^{2}+3}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=6-\sqrt{33}}\\{y=24-3\sqrt{33}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=6+\sqrt{33}}\\{y=24+3\sqrt{33}}\end{array}\right.$£¬
¡àE3£¨6+$\sqrt{33}$£¬24+3$\sqrt{33}$£©£¬E4£¨6-$\sqrt{33}$£¬24-3$\sqrt{33}$£©£¬
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄµãEµÄ×ø±êΪ£¨9£¬21£©»ò£¨3£¬3£©»ò£¨6+$\sqrt{33}$£¬24+3$\sqrt{33}$£©»ò£¨6-$\sqrt{33}$£¬24-3$\sqrt{33}$£©£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯ÊýµÄÓ¦Óá¢Ö±Ïß¹ý¶¨µãÎÊÌâ¡¢Èý½ÇÐεÄÃæ»ýÎÊÌâ¡¢Á½Ö±Ï߯½ÐеÄÌõ¼þµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓöԳƽâ¾öÎÊÌ⣬Áé»îÔËÓÃËùѧ֪ʶ£¬Ñ§»áÀûÓÃÆ½ÐÐÏß½â¾öÃæ»ýÎÊÌ⣬°ÑÎÊÌâת»¯Îª½â·½³Ì×éÇó½»µã×ø±ê£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èô¡Ï1ºÍ¡Ï2»¥²¹£¬¡Ï2Óë¡Ï3»¥²¹£¬Èô¡Ï1=68¡ã£¬Ôò¡Ï3=£¨¡¡¡¡£©
A£®28¡ãB£®68¡ãC£®118¡ãD£®90¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Ä³²âÑéÖÐÓÐ2µÀÑ¡ÔñÌ⣬¶øÃ¿µÀÓÐ3¸öÑ¡Ïµ±ÖÐÖ»ÓÐÒ»ÏîÊÇÕýÈ·µÄ£®Èôΰ³ÉËæÒâÑ¡Ôñ´ð°¸£¬ÇóÏÂÁÐʼþµÄ¸ÅÂÊ£®
£¨1£©Á½µÀÈ«´ð¶Ô£»
£¨2£©Á½µÀÈ«´ð´í£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ÒÑÖª¡÷ABC£®
£¨1£©»­³öÓë¡÷ABC¹ØÓÚxÖá¶Ô³ÆµÄͼÐΡ÷A1B1C1£¬²¢Ð´³ö¡÷A1B1C1¸÷Ïîµã×ø±ê£»
£¨2£©¡÷ABCµÄÃæ»ýΪ¶àÉÙ£¿
£¨3£©ÔÚxÖáÉÏÕÒÒ»µãP£¬Ê¹µãPA+PCµÄÖµ×îС£¬ÔÚͼÉϱê³öPµãλÖã®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®³ö×⳵˾»úСÀîijÌìÉÏÎçµÄÔËÓªÊÇÔÚ¶«Î÷×ßÏòµÄ´ó½ÖÉÏÔËÓªµÄ£®Èç¹û¹æ¶¨·½ÏòÏò¶«ÎªÕý£¬ÏòÎ÷Ϊ¸º£¬ËûÕâÌìÉÏÎçµÄÐгµÀï³Ì£¨µ¥Î»£ºÇ§Ã×£©ÈçÏ£º
+15£¬-2£¬+10£¬-5£¬+10£¬-3£¬-4£¬+12£¬+3£¬-6
£¨1£©½«×îºóÒ»Ãû³Ë¿ÍË͵½Ä¿µÄµØÊ±£¬Ð¡Àî¾àÉÏÎçµÄ³ö·¢µã¶àÔ¶£¿
£¨2£©ÈôÆû³µºÄÓÍÁ¿Îª0.3Éý/ǧÃ×£¬ÕâÌìÉÏÎçСÀî¹²ºÄÓͶàÉÙÉý£¿
£¨3£©Èô³ö×â³µÆð²½¼ÛΪ5Ôª£¬Æð²½Àï³ÌΪ2ǧÃ×£¨°üÀ¨2ǧÃ×£©£¬³¬¹ý²¿·ÖÿǧÃ×1Ôª£¬ÎÊÕâÌìÉÏÎçСÀî¹²µÃ¶àÉÙ³µ·Ñ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬ÏÒCD¡ÍABÓÚH£¬¹ýCDÑÓ³¤ÏßÉÏÒ»µãE×÷¡ÑOµÄÇÐÏß½»ABµÄÑÓ³¤ÏßÓÚF£®ÇеãΪG£¬Á¬½ÓAG½»CDÓÚK£®
£¨1£©Èçͼ1£¬ÇóÖ¤£ºKE=GE£»
£¨2£©Èçͼ2£¬ÈôAC¡ÎEF£¬ÊÔÅжÏÏß¶ÎKG¡¢KD¡¢GE¼äµÄÊýÁ¿¹ØÏµ£¬²¢ËµÃ÷ÀíÓÉ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬ÈôsinE=$\frac{3}{5}$£¬AK=2$\sqrt{3}$£¬Çó¡ÑOµÄ°ë¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ò»¸öÊýµÄÏà·´ÊýÊÇ|-3|£¬ÔòÕâ¸öÊýÊÇ£¨¡¡¡¡£©
A£®-$\frac{1}{3}$B£®$\frac{1}{3}$C£®-3D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÈçͼÊÇУ԰»¨ÆÔÒ»½Ç£¬ÓеÄͬѧΪÁËʡʱ¼äͼ·½±ã£¬ÔÚ»¨ÆÔÖвȳöÁËÒ»ÌõСµÀ£¬ÕâЩͬѧÕâÑù×öµÄÊýѧµÀÀíÊÇ£¨¡¡¡¡£©
A£®µã¶¯³ÉÏßB£®Á½µãÖ®¼äÖ±Ïß×î¶Ì
C£®Á½µãÖ®¼äÏß¶Î×î¶ÌD£®Á½µãÈ·¶¨Ò»ÌõÖ±Ïß

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÏÂÁÐͼÐÎÖмÈÊÇÖá¶Ô³ÆÍ¼ÐÎÓÖÊÇÖÐÐĶԳÆÍ¼ÐεÄÊÇ£¨¡¡¡¡£©
A£®µÈ±ßÈý½ÇÐÎB£®ÕýÎå±ßÐÎC£®Æ½ÐÐËıßÐÎD£®ÕýÁù±ßÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸