·ÖÎö £¨1£©¢Ù¸ù¾ÝµãM¡¢NµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣮
¢Ú²ÂÏëQ£¨3£¬6-t£©£®ÉèÖ±ÏßMNµÄ½âÎöʽ£ºy=kx+b£¨k¡Ù0£©£¬ÓÉ$\left\{\begin{array}{l}{y=kx+b}\\{y=\frac{1}{2}£¨x-3£©^{2}+3}\end{array}\right.$µÃx2-£¨2k+6£©x+15-2b=0¿ÉµÃxM+xN=2k+6£¬xM•xN=15-2b£¬ÓÉtan¡ÏMPQ=tan¡ÏNPQ£¬µÃ$\frac{3-{x}_{M}}{{y}_{M}-t}$=$\frac{{x}_{N}-3}{{y}_{N}-t}$£¬»¯¼òµÃ12k-2kb-2kt-6k2=0£¬ÒòΪk¡Ù0ËùÒÔ6-b-t-3k=0£¬ËùÒÔb=6-t-3k£¬ËùÒÔy=kx+6-t-3k=k£¨x-3£©+6-t£¬Óɴ˼´¿ÉÅж¨¹ý¶¨µãQ£¨3£¬6-t£©£®
£¨2£©ÓÉÌâÒ⣬Q£¨3£¬9£©£¬Ö±ÏßMN¾¹ý£¨0£¬0£©£¬Q£¨3£¬9£©£¬¿ÉµÃÖ±ÏßMNµÄ½âÎöʽΪy=3x£¬¹ýP×÷PG¡ÎMN½»yÖáÓÚG£¬ÔòÖ±ÏßPGµÄ½âÎöʽΪy=3x-12£¬
È¡OGµÄÖеãF£¨0£¬-6£©£¬H£¨0£¬6£©£¬¹ýµãF×÷MNµÄƽÐÐÏß½»Å×ÎïÏßÓÚE1¡¢E2£¬´Ëʱ¡÷EMNµÄÃæ»ý=$\frac{1}{2}$¡÷PMNµÄÃæ»ý£¬Ö±ÏßEF½âÎöʽΪy=3x-6£¬ÓÉ$\left\{\begin{array}{l}{y=3x-6}\\{y=\frac{1}{2}£¨x-3£©^{2}+3}\end{array}\right.$½â·½³Ì×é¿ÉµÃµãE1¡¢E2£¬µÄ×ø±ê£¬Í¬·¨¿ÉµÃE3¡¢E4µÄ×ø±ê£®
½â´ð ½â£º£¨1£©¢ÙÉèÖ±ÏßMNµÄ½âÎöʽΪy=kx+b£¬
°ÑM£¨1£¬5£©£¬N£¨7£¬11£©µÄ×ø±ê´úÈëµÃµ½$\left\{\begin{array}{l}{k+b=5}\\{7k+b=11}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=1}\\{b=4}\end{array}\right.$£¬
¡àÖ±ÏßMNµÄ½âÎöʽΪy=x+4£®
¹Ê´ð°¸Îªy=x+4£®
¡ßÖ±Ïßx=3ƽ·Ö¡ÏMPN£¬
¡àµã£¨6£¬$\frac{15}{2}$£©¹ØÓÚÖ±Ïßx=3µÄ¶Ô³ÆµãÔÚÅ×ÎïÏßÉÏ£¬
¼´£¨0£¬$\frac{15}{2}$£©ÔÚÅ×ÎïÏßÉÏ£¬Ö±ÏßAP¾¹ýµã£¨0£¬$\frac{15}{2}$£©£¬
¡àÖ±ÏßPMµÄ½âÎöʽΪy=-$\frac{17}{6}$x+$\frac{15}{2}$£¬
ÓÉ$\left\{\begin{array}{l}{y=-\frac{17}{6}x+\frac{15}{2}}\\{y=\frac{1}{2}£¨x-3£©^{2}+3}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=0}\\{y=\frac{15}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{1}{3}}\\{y=\frac{59}{9}}\end{array}\right.$£¬
¡àM£¨$\frac{1}{3}$£¬$\frac{59}{9}$£©£¬N£¨6£¬$\frac{15}{2}$£©£¬
¡àÖ±ÏßMNµÄ½âÎöʽΪy=$\frac{1}{6}$x+$\frac{13}{2}$£®
¹Ê´ð°¸Îªy=$\frac{1}{6}$x+$\frac{13}{2}$£®
¢Ú²ÂÏëQ£¨3£¬6-t£©£®ÀíÓÉÈçÏ£¬
Ö¤Ã÷£ºÉèÖ±ÏßMNµÄ½âÎöʽ£ºy=kx+b£¬£¨k¡Ù0£©£¬
ÓÉ$\left\{\begin{array}{l}{y=kx+b}\\{y=\frac{1}{2}£¨x-3£©^{2}+3}\end{array}\right.$µÃx2-£¨2k+6£©x+15-2b=0
¡àxM+xN=2k+6£¬xM•xN=15-2b£¬
ÓÉtan¡ÏMPQ=tan¡ÏNPQ£¬µÃ
$\frac{3-{x}_{M}}{{y}_{M}-t}$=$\frac{{x}_{N}-3}{{y}_{N}-t}$£¬»¯¼òµÃ12k-2kb-2kt-6k2=0£¬
¡ßk¡Ù0
¡à6-b-t-3k=0£¬
¡àb=6-t-3k£¬
¡ày=kx+6-t-3k=k£¨x-3£©+6-t£¬
¡àQ£¨3£¬6-t£©£®
¹Ê´ð°¸Îª£¨3£¬6-t£©£®
£¨2£©Èçͼ2ÖУ¬![]()
ÓÉÌâÒ⣬Q£¨3£¬9£©£¬Ö±ÏßMN¾¹ý£¨0£¬0£©£¬Q£¨3£¬9£©£¬
¡àÖ±ÏßMNµÄ½âÎöʽΪy=3x£¬
¹ýP×÷PG¡ÎMN½»yÖáÓÚG£¬ÔòÖ±ÏßPGµÄ½âÎöʽΪy=3x-12£¬
È¡OGµÄÖеãF£¨0£¬-6£©£¬H£¨0£¬6£©£¬
¹ýµãF×÷MNµÄƽÐÐÏß½»Å×ÎïÏßÓÚE1¡¢E2£¬´Ëʱ¡÷EMNµÄÃæ»ý=$\frac{1}{2}$¡÷PMNµÄÃæ»ý£¬
Ö±ÏßEF½âÎöʽΪy=3x-6£¬
ÓÉ$\left\{\begin{array}{l}{y=3x-6}\\{y=\frac{1}{2}£¨x-3£©^{2}+3}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=9}\\{y=21}\end{array}\right.$£¬
¡àE1£¨9£¬21£©£¬E2£¨3£¬3£©£¬
¹ýµãH×÷MNµÄƽÐÐÏߣ¬ÓëÅ×ÎïÏß½»ÓÚµãE3¡¢E4£¬´Ëʱ´Ëʱ¡÷EMNµÄÃæ»ý=$\frac{1}{2}$¡÷PMNµÄÃæ»ý£¬
Ö±ÏßEHµÄ½âÎöʽΪy=3x+6£¬
ÓÉ$\left\{\begin{array}{l}{y=3x+6}\\{y=\frac{1}{2}£¨x-3£©^{2}+3}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{x=6-\sqrt{33}}\\{y=24-3\sqrt{33}}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=6+\sqrt{33}}\\{y=24+3\sqrt{33}}\end{array}\right.$£¬
¡àE3£¨6+$\sqrt{33}$£¬24+3$\sqrt{33}$£©£¬E4£¨6-$\sqrt{33}$£¬24-3$\sqrt{33}$£©£¬
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄµãEµÄ×ø±êΪ£¨9£¬21£©»ò£¨3£¬3£©»ò£¨6+$\sqrt{33}$£¬24+3$\sqrt{33}$£©»ò£¨6-$\sqrt{33}$£¬24-3$\sqrt{33}$£©£®
µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Ò»´Îº¯ÊýµÄÓ¦Óá¢Ö±Ïß¹ý¶¨µãÎÊÌâ¡¢Èý½ÇÐεÄÃæ»ýÎÊÌâ¡¢Á½Ö±Ï߯½ÐеÄÌõ¼þµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓöԳƽâ¾öÎÊÌ⣬Áé»îÔËÓÃËùѧ֪ʶ£¬Ñ§»áÀûÓÃÆ½ÐÐÏß½â¾öÃæ»ýÎÊÌ⣬°ÑÎÊÌâת»¯Îª½â·½³Ì×éÇó½»µã×ø±ê£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 28¡ã | B£® | 68¡ã | C£® | 118¡ã | D£® | 90¡ã |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{1}{3}$ | B£® | $\frac{1}{3}$ | C£® | -3 | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µã¶¯³ÉÏß | B£® | Á½µãÖ®¼äÖ±Ïß×î¶Ì | ||
| C£® | Á½µãÖ®¼äÏß¶Î×î¶Ì | D£® | Á½µãÈ·¶¨Ò»ÌõÖ±Ïß |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µÈ±ßÈý½ÇÐÎ | B£® | ÕýÎå±ßÐÎ | C£® | ƽÐÐËıßÐÎ | D£® | ÕýÁù±ßÐÎ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com