精英家教网 > 初中数学 > 题目详情

【题目】如图,D为等腰RtABC的斜边AB的中点,EBC边上一点,连接ED并延长交CA的延长线于点F,DDHEFACG、交BC的延长线于H,则以下结论:DE=DG;BE=CG;DF=DB;(BH=CF.其中正确的是____

【答案】①②③④

【解析】

连接CD.欲证线段相等,就证它们所在的三角形全等.证明DBE≌△DCG,DCH≌△DAF

根据已知条件,

ABC是等腰直角三角形,CD是中线。

BD=DC、∠B=DCA=45°.

又∵∠BDC=EDH=90°,

BDE+EDC=EDC+CDH

∴∠BDE=CDH

∴△DBE≌△DCG(ASA)

DE=DG BE=CG

同理可证:DCH≌△DAF,可得:DF=DH;AF= CH

BC=AC, CH=AF

BH=CF

故答案为①②③④

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】完成下列推理证明.

已知:如图,ADEF,∠1=∠2.

求证:ABDG.

证明:∵ADEF(________)

∴∠1=∠(_____)(________________

∵∠1=∠2(已知)

∴∠________=∠2(________________________)

ABDG(______________________________________)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形纸片的两直角边长分别为6.8,按如图那样折叠,使点A与点B重合,折痕为DE,求△BDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学三次到某超市购买A、B两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:

类别

次数

购买A商品数量(件)

购买B商品数量(件)

消费金额(元)

第一次

4

5

320

第二次

2

6

300

第三次

5

7

258

解答下列问题:

(1)第  次购买有折扣;

(2)求A、B两种商品的原价;

(3)若购买A、B两种商品的折扣数相同,求折扣数;

(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:

(1)本次接受随机抽样调查的学生人数为   ,图①中m的值为   

(2)求本次调查获取的样本数据的众数、中位数和平均数;

(3)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题提出):分解因式:(12x2+2xy3x3y;(2a2b2+4a4b

(问题探究):某数学“探究学习”小组对以上因式分解题目进行了如下探究:

探究1:分解因式:(12x2+2xy3x3y

该多项式不能直接使用提取公因式法,公式法进行因式分解.于是仔细观察多项式的特点.甲发现该多项式前两项有公因式2x,后两项有公因式﹣3,分别把它们提出来,剩下的是相同因式(x+y),可以继续用提公因式法分解.

解:2x2+2xy3x3y=(2x2+2xy)﹣(3x+3y)=2xx+y)﹣3x+y)=(x+y)(2x3

另:乙发现该多项式的第二项和第四项含有公因式y,第一项和第三项含有公因式x,把yx提出来,剩下的是相同因式(2x3),可以继续用提公因式法分解.

解:2x2+2xy3x3y=(2x23x)+(2xy3y)=x2x3)+y2x3)=(2x3)(x+y

探究2:分解因式:(2a2b2+4a4b

该多项式亦不能直接使用提取公因式法,公式法进行因式分解,于是若将此题按探究1的方法分组,将含有a的项分在一组即a2+4aaa+4),含有b的项一组即﹣b24b=﹣bb+4),但发现aa+4)与﹣bb+4)再没有公因式可提,无法再分解下去.于是再仔细观察发现,若先将a2b2看作一组应用平方差公式,其余两项看作一组,提出公因式4,则可继续再提出因式,从而达到分解因式的目的.

解:a2b2+4a4b=(a2b2)+(4a4b)=(a+b)(ab)+4ab)=(ab)(4+a+b

(方法总结):对不能直接使用提取公因式法,公式法进行分解因式的多项式,我们可考虑把被分解的多项式分成若干组,分别按“基本方法”即提取公因式法和运用公式法进行分解,然后,综合起来,再从总体上按“基本方法”继续进行分解,直到分解出最后结果.这种分解因式的方法叫做分组分解法.

分组分解法并不是一种独立的因式分解的方法,而是通过对多项式进行适当的分组,把多项式转化为可以应用“基本方法”分解的结构形式,使之具有公因式,或者符合公式的特点等,从而达到可以利用“基本方法”进行分解因式的目的.

(学以致用):尝试运用分组分解法解答下列问题:

1)分解因式:

2)分解因式:

(拓展提升):

3)尝试运用以上思路分解因式:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:

种植户

种植A类蔬菜面积

(单位:亩)

种植B类蔬菜面积

(单位:亩)

总收入

(单位:元)

3

1

12500

2

3

16500

说明:不同种植户种植的同类蔬菜每亩平均收入相等.

(1)求A、B两类蔬菜每亩平均收入各是多少元?

(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DAB中点,EAC中点,FBC中点,请填空:

1)四边形BDEF   四边形;

2)若四边形BDEF是菱形,则△ABC满足的条件是   

3)若四边形BDEF是矩形,则△ABC满足的条件是   

4)若四边形BDEF是正方形,则△ABC满足的条件是   

并就(2)、(3)、(4)中选取一个进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知2A型车和1B型车载满货物一次可运货10.1A型车和2B型车载满货物一次可运货11.某物流公司现有31吨货物,计划同时租用A型车a辆和B型车b,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:

11A型车和1B型车载满货物一次分别可运货物多少吨?

2请帮助物流公司设计租车方案

3A型车每辆车租金每次100元,B型车每辆车租金每次120.请选出最省钱的租车方案,并求出最少的租车费.

查看答案和解析>>

同步练习册答案