【题目】(10分)如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.
(1)求证:∠ADC=∠ABD;
(2)求证:AD2=AMAB;
(3)若AM=,sin∠ABD=,求线段BN的长.
【答案】(1)证明见试题解析;(2)证明见试题解析;(3).
【解析】试题分析:(1)连接OD,由切线的性质和圆周角定理即可得到结果;
(2)证明△ADM∽△ABD,即可得到结论;
(3)根据三角函数和勾股定理即可得到结果.
试题解析:(1)连接OD,∵直线CD切⊙O于点D,∴∠CDO=90°,∵AB为⊙O的直径,∴∠ADB=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,∵OB=OD,∴∠3=∠4,∴∠ADC=∠ABD;
(2)∵AM⊥CD,∴∠AMD=∠ADB=90°,∵∠1=∠4,∴△ADM∽△ABD,∴,∴AD2=AMAB;
(3)∵sin∠ABD=,∴sin∠1=,∵AM=,∴AD=6,∴AB=10,∴BD==8,∵BN⊥CD,∴∠BND=90°,∴∠DBN+∠BDN=∠1+∠BDN=90°,∴∠DBN=∠1,∴sin∠NBD=,∴DN=,∴BN==.
科目:初中数学 来源: 题型:
【题目】在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:
如图,将矩形的四边、、、分别延长至、、、,使得,,连接,,,.
(1) 求证:四边形为平行四边形;
(2) 若矩形是边长为1的正方形,且,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线交于点O,点E是菱形外一点,DE∥AC,CE∥BD.
(1)求证:四边形DECO是矩形;
(2)连接AE交BD于点F,当∠ADB=30°,DE=2时,求AF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,OA,OD是⊙O半径.过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B.
(1)求证:直线CD是⊙O的切线;
(2)如果D点是BC的中点,⊙O的半径为 3cm,求的长度.(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋里有 个除颜色外都相同的球,其中有 个红球, 个黄球.
(1) 若从中随意摸出一个球,求摸出红球的可能性;
(2) 若要使从中随意摸出一个球是红球的可能性为 ,求袋子中需再加入几个红球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AD∥BE∥CF,它们以此交直线l1、l2于点A、B、C和D、E、F.若,AC=14,
(1)求AB的长.
(2)如果AD=7,CF=14,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.
⑴ 随机转动转盘一次,停止后(若指针落在分割线上,则重新转动,直至指向数字),指针指向数字1的概率是多少?(直接写出结果)
⑵ 小丽和小芳利用此转盘做游戏,游戏规则如下:自由转动转盘两次(若指针落在分割线上,则重转,直至指向数字),如果指针两次所指的数字之和为偶数,则小丽胜;否则,小芳胜.你认为对双方公平吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com