精英家教网 > 初中数学 > 题目详情

在等腰梯形ABCD中,AD∥BC,AB=AD=CD,∠ABC=60°,延长AD到E,使DE=AD,延长DC到F,使DC=CF,连接BE、BF和EF.
(1)求证:△ABE≌△CFB;
(2)如果AD=6,tan∠EBC的值.

解:(1)证明:在△BAE与△FCB中,

∴△BAE≌△FCB;

(2)延长BC交EF于点G,作AH⊥BG于H,作AM⊥BG,
∵△BAE≌△FCB,
∴∠AEB=∠FBG,BE=BF,
又∵AE∥BC,
∴△BEF为等腰三角形,
∴∠AEB=∠EBG,
∴∠EBG=∠FBG,
∴BG⊥EF,
∵∠AMG=∠EGM=∠AEG=90°,
∴四边形AMGE为矩形,
∴AM=EG,
在Rt△ABM中,
AM=AB•sin60°=6×=3
∴EG=AM=3
BG=BM+MG=6×2+6×cos60°=15,
∴tan∠EBC=
分析:(1)根据SAS即可作出证明.
(2)根据(1)的结论结合AE∥BC可得出△BEF为等腰三角形,进而在Rt△EGB中可求出EG、BG的长度,这样也就得出了答案.
点评:本题考查等腰梯形的性质,难度一般,解答本题的关键是根据题意得出解题需要的条件.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、在等腰梯形ABCD中,AD∥BC,AD=3cm,AB=4cm,∠B=60°,则下底BC的长为
7
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、如图所示,在等腰梯形ABCD中,AD∥BC,AB=CD,点P为BC边上任意一点,且
PE⊥AB,PF⊥CD,BG⊥CD,垂足分别是E、F、G,请你探索PE、PF、BG的长度之间的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E为边BC上一点,且AE=DC.
(1)求证:四边形AECD是平行四边形;
(2)当∠B=2∠DCA时,求证:四边形AECD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点,MB=MC吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,垂足为O,过D作DE∥AC交BC的延长线于E.
(1)求证:四边形ACED是平行四边形;
(2)若AD=4,BC=8,求梯形ABCD的面积.

查看答案和解析>>

同步练习册答案