精英家教网 > 初中数学 > 题目详情

【题目】如图,点 D,E ABC的边 BC上,连接AD,AE.下面有三个等式:AB=AC;AD=AE;BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,相构成以下三个命题:命题如果①② 成立,那么成立”; 命题如果①③成立,那么成立;命题如果②③成立,那么成立”.

(1)以上三个命题是真命题的为__________(直接作答);

(2)请选择一个真命题进行证明先写出所选命题,然后证明).

【答案】(1);(2)证明见解析.

【解析】

(1)根据真命题的定义即可得出结论,

(2)根据全等三角形的判定方法及全等三角形的性质即可证明.

解:(1)Ⅰ,Ⅱ,Ⅲ,

故答案为:Ⅰ,Ⅱ,Ⅲ.

(2)选择命题Ⅱ“如果①③成立,那么②成立”;

证明:∵AB=AC,

∴∠B=C,

ABD ACE

,

∴△ABD≌△ACE(SAS),

AD=AE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,D在边AC上,且

如图1,填空____________

如图2,若M为线段AC上的点,过M作直线H,分别交直线ABBC与点NE

求证:是等腰三角形;

试写出线段ANCECD之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知抛物线y=ax2+bx﹣3的对称轴为x=1,与x轴分别交于A、B两点,与y轴交于点C,一次函数y=x+1经过A,且与y轴交于点D.

(1)求该抛物线的解析式.
(2)如图(2),点P为抛物线B、C两点间部分上的任意一点(不含B,C两点),设点P的横坐标为t,设四边形DCPB的面积为S,求出S与t的函数关系式,并确定t为何值时,S取最大值?最大值是多少?

(3)如图(3),将△ODB沿直线y=x+1平移得到△O′D′B′,设O′B′与抛物线交于点E,连接ED′,若ED′恰好将△O′D′B′的面积分为1:2两部分,请直接写出此时平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,张老师举了下面的例题:

1 等腰三角形中,,求的度数.(答案:

2 等腰三角形中,,求的度数.(答案:

张老师启发同学们进行变式,小敏编了如下一题:

变式 等腰三角形中,,求的度数.

(1)请你解答以上的变式题.

(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,设,当有三个不同的度数时,请你探索的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠BAD=∠ADC=90°,AB=AD= ,CD= ,点P在四边形ABCD上,若P到BD的距离为 ,则点P的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三角形 ABC 中,∠A 的平分线交 BC 于点 D,过点 D 作 DE⊥AC, DF⊥AB,垂足分别为 E,F,下面四个结论:

①∠AFE=∠AEF;②AD 垂直平分 EF;③;④EF 一定平行 BC. 其中正确的是(

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 已知Rt△ABC中,AC=BC,∠C=90°,DAB边的中点,∠EDF=90°,∠EDFD点旋转,它的两边分别交ACCB(或它们的延长线)于EF.当∠EDFD点旋转到DEACE时(如图1),易证当∠EDFD点旋转到DEAC不垂直时,在图2和图3这两种情况下,上述结论是否成立? 若成立,请给予证明;若不成立,又有怎样的数量关系?请写出你的猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点C在线段AB上,点MN分别是ACBC的中点.

1)若AC = 8CB = 6,求线段MN的长;

2)若AC = aMN = b,求线段BC的长用含的代数式可以表示.

查看答案和解析>>

同步练习册答案