【题目】如图,Rt△ABC中,∠C=90°,把R△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB上 .
(1)若∠BDA=70°,求∠BAC的度数;
(2)若BC=8,AC=6,求△ABD中AD边上的高.
【答案】(1)50° (2)
【解析】
(1)由旋转性质知BD=BA,∠CBA=∠EBD,据此可得∠BDA=70°,从而得∠ABD=∠ABC=40°,结合∠C=90°可得答案;
(2)由旋转性质得BE=BC=8,DE=AC=6,AB=BD=10,从而得AE=2,利用勾股定理知AD=,作BF⊥AD于点F得AF=AD=,再次利用勾股定理可得答案.
解:(1)由旋转性质知BD=BA,∠CBA=∠EBD,
∵∠BDA=70°,
∴∠BAD=70°,
∴∠ABD=∠ABC=40°,
∵∠C=90°,
∴∠BAC=50°;
(2)∵BC=8,AC=6,∠C=90°,
∴AB===10,
由旋转性质知△ABC≌△DBE,
则BE=BC=8,DE=AC=6,AB=BD=10
∴AE=AB-BE=2,
在Rt△ADE中,AD=
作BF⊥AD于点F,
∵BA=BD,
∴AF=AD=
∴BF=
科目:初中数学 来源: 题型:
【题目】回答下列问题:
(1)如图所示的甲、乙两个平面图形能折什么几何体?
(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为f,顶点个数为v,棱数为e,分别计算第(1)题中两个多面体的f+v﹣e的值?你发现什么规律?
(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小左同学想利用影长测量学校旗杆的高度,如图,她在某一时刻立一长度为1米的标杆,测得其影长为米,同时旗杆投影的一部分在地上,另一部分在某一建筑物的墙上,测得旗杆与建筑物的距离为10米,旗杆在墙上的影高为2米,请帮小左同学算出学校旗杆的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.
(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?
(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;
(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《庄子·天下》:“一尺之棰,日取其半,万世不竭.”意思是说:一尺长的木棍,每天截掉一半,永远也截不完.我国智慧的古代人在两千多年前就有了数学极限思想,今天我们运用此数学思想研究下列问题.
(规律探索)
(1)如图1所示的是边长为1的正方形,将它剪掉一半,则S阴影1=1-=__________;
如图2,在图1的基础上,将阴影部分再裁剪掉—半,则S阴影2=1--()2=_______;
同种操作,如图3,S阴影3=1--()2-()3=__________;
如图4,S阴影4=1--()2-()3-()4=___________;
……
若同种地操作n次,则S阴影n=1--()2-()3-…-()n=_________.
(规律归纳)
(2)直接写出+++…+的化简结果:_________.
(规律应用)
(3)直接写出算式+++…+的值:__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如点M、N把线段AB分割成AM、MN、BN,若以AM、MN、BN,为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)如图2,已知点C、D是线段AB的勾股分割点,若AC=3,DB=4,求CD的长;
(2)如图3,在正方形ABCD中,∠MAM=45°,角的两边AM、AN分别交BD于E、F(不与端点重合),求证:E、F是BD的勾股分割点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜( )
A.10场B.11场C.12场D.13场
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com