【题目】已知△ABC的三边a,b,c,满足a+b2+|c﹣6|+28=4+10b,则△ABC的外接圆半径=__________.
科目:初中数学 来源: 题型:
【题目】已知AB∥CD,解决下列问题:
(1)如图①,写出∠ABE、∠CDE和∠E之间的数量关系: ;
(2)如图②,BP、DP分别平分∠ABE、∠CDE,若∠E=100°,求∠P的度数;
(3)如图③,若∠ABP=∠ABE,∠CDP=
∠CDE,试写出∠P与∠E的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A′B′C′关于点P成中心对称,则点A′的坐标为( )
A. (﹣4,﹣5) B. (﹣5,﹣4) C. (﹣3,﹣4) D. (﹣4,﹣3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果零售商店分两批次从批发市场共购进“红富士”苹果100箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款400元.
(1)求第一、二次分别购进“红富士”苹果各多少箱?
(2)商店对这100箱“红富士”苹果先按每箱60元销售了75箱后出现滞销,于是决定其余的每箱靠打折销售完.要使商店销售完全部“红富士”苹果所获得的利润不低于1300元,问其余的每箱至少应打几折销售?(注:按整箱出售,利润=销售总收人﹣进货总成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+1与两坐标轴分别交于A,B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,Pn﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,Tn﹣1,用S1,S2,S3,…,Sn﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn﹣1Pn﹣2Pn﹣1的面积,则S1+S2+S3+…+Sn﹣1=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,图①是一个长为2m,宽为2n的长方形.沿图中虚线把它分割成四块完全相同的小长方形,然后按图②的形状拼成一个正方形.
(1)求图②中阴影部分的面积.
(2)观察图②,发现三个代数式(m+n)2,(m-n)2,mn之间的等量关系是 .
(3)若x+y=-6,xy=2.75,求x-y的值.
(4)观察图③,你能得到怎样的代数恒等式?
(5)试画出一个几何图形,使它的面积能表示代数恒等式(m+n)(m+3n)=m2+4mn+3n2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AM∥CN,点B为平面内一点,AB⊥BC于B
(1)如图1,直接写出∠A和∠C之间的数量关系;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E.F在DM上,连接BE.BF.CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知双曲线y1=与直线y2=ax+b交于点A(﹣4,1)和点B(m,﹣4).
(1)求双曲线和直线的解析式;
(2)直接写出线段AB的长和y1>y2时x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com