精英家教网 > 初中数学 > 题目详情

【题目】如图正方形 ABCD ,AE=AB,直线 DE BC 于点 F,∠BED 的度数是( )

A. 105° B. 120° C. 135° D. 150°

【答案】C

【解析】

先设∠BAE=x°,根据正方形性质推出 AB=AE=AD,BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB 和∠AED 的度数.

解:设∠BAE=x°,

∵四边形 ABCD 是正方形,

∴∠BAD=90°,AB=AD,

∵AE=AB,

∴AB=AE=AD,

∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,

∴∠DAE=90°﹣x°

∴∠AED=∠ADE= (180°﹣∠DAE)= [180°﹣(90°﹣x°)]=45°+ x°,

∴∠BED=90°﹣x°+45°+ x°=135°.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC与BD交于点O,ABC:BAD=1:2,BEAC,CEBD.

1求tanDBC的值;

2求证:四边形OBEC是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为(  )(精确到1米, =1.732).

A. 585 B. 1014 C. 805 D. 820

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ABC=90°,以AB为直径的OAC于点D,点EBC的中点,连接DE

(1)求证:DEO的切线;

(2)求证:4DE2CDAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处与地面距离为420米,求这栋楼的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).

1)请你求出该班的总人数,并补全频数分布直方图;

2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的顶点坐标分别为A(﹣4,5),B(﹣5,2),C(﹣3,4)

(1)画出与ABC关于原点O对称的A1B1C1,并写出点A1的坐标为   

(2)Dx轴上一点,使DB+DC的值最小,画出点D(保留画图痕迹);

(3)Pt,0)是x轴上的动点,将点C绕点P顺时针旋转90°至点E,直线y=﹣2x+5经过点E,则t的值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年3月国际风筝节期间,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:

(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);

(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?

(3)当售价定为多少时,王大伯获得利润W最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某隧道洞的内部截面顶部是抛物线形,现测得地面宽 AB=10m,隧道顶点O到地面AB的距离为5m,

(1)建立适当的平面直角坐标系,幵求该抛物线的解析式;

(2)一辆小轿车长 4.5米,宽2米,高1.5米,同样大小的小轿车通过该隧道,最多能有 几辆车幵行?

查看答案和解析>>

同步练习册答案