精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点A在反比例函数x0)的图像上,过点AACx轴,垂足是CAC=OC.一次函数y=kx+b的图像经过点A,与y轴的正半轴交于点B

1)求点A的坐标;

2)若四边形ABOC的面积是,求一次函数y=kx+b的表达式.

【答案】(1);(2)y=+2

【解析】

1)由AC=OC,设Am,m)代入反比例函数得m2=9,求出A点坐标;

2)利用四边形ABOC的面积求出B点坐标,再用待定系数法确定函数关系式即可求出AB的解析式.

1)∵AC=OC

∴可设Am,m

∵点Am,m)在y=的图像上

m2=9

m=±3

x0

m=3

2)∵ACx轴,OBx

S四边形ABOC==(3+OB)·3=

OB=2

B02

y=kx+b过点A33),B02

∴一次函数的表达式为y=+2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB⊙O的直径,P⊙O外一点,且OP∥BC∠P=∠BAC

(1)求证:PA⊙O 的切线;

(2)若OB=5OP=,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:

方案一:从纸箱厂定制购买,每个纸箱价格为4元;

方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.

1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式;

2)假设你是决策者,你认为应该选择哪种方案?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DEABEDFACF,若BDCDBECF

1)求证:AD平分∠BAC

2)写出AB+ACAE之间的等量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A()和B(4,m),点P是线段AB上异于A、B的动点,过点PPCx轴于点D,交抛物线于点C.

(1)B点坐标为  ,并求抛物线的解析式;

(2)求线段PC长的最大值;

(3)若PAC为直角三角形,直接写出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数a<0)图象与x轴的交点AB的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:

①16a﹣4b+c<0;②P(﹣5,y1),Qy2)是函数图象上的两点,则y1y2;③a=﹣c;④ABC是等腰三角形,则b=﹣.其中正确的有______(请将结论正确的序号全部填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形网格上有6个三角形:①△ABC;②△BCD;③△BDE;④△BFG;⑤△FGH;⑥△EFK.其中②⑥中与①相似的是( )

A. ②③④ B. ③④⑤ C. ④⑤⑥ D. ②③⑥

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在ABC中,∠A=90°,AB=AC,点DBC的中点.

(1)如图①,若点E、F分别为AB、AC上的点,且DEDF,求证:BE=AF;

(2)若点E、F分别为AB、CA延长线上的点,且DEDF,那么BE=AF吗?请利用图②说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为庆祝2015年元且的到来,学校决定举行庆元旦迎新年文艺演出,根据演出需要,用700元购进甲、乙两种花束共260朵,其中甲种花束比乙种花束少用100元,已知甲种花束单价比乙种花束单价高20%,乙种花束的单价是多少元?甲、乙两种花束各购买了多少?

查看答案和解析>>

同步练习册答案