【题目】抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.
(1)点A,B,D的坐标分别为 , , ;
(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;
(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]
【答案】(1)A(,0);B(3,0);D(,);(2)≤t≤;(3)存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).
【解析】
(1)利用二次函数图像上的点的坐标特征可求得点A、B的坐标,再利用配方法即可找到抛物线的顶点坐标;
(2)由点D的坐标结合对称找到点E的坐标,根据点B、C的坐标利用待定系数法确定直线BC函数关系式,再利用一次函数图像上的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;
(3)假设存在,设点P的坐标为(,0),则点Q的横坐标为m,分或及三种情况,利用勾股定理找出关于m的一元二次方程,解出即可得出m的值,进而可找出点P的坐标.
解:(1)当y=0时,﹣x2+x﹣1=0,
解得x1=,x2=3,
∴点A的坐标为(,0),点B的坐标为(3,0),
∵y=﹣x2+x﹣1=﹣(x-)2+,
∴点D的坐标为(,);
(2)∵点E、点D关于直线y=t对称,
∴点E的坐标为(,2t﹣).
当x=0时,y=﹣x2+x﹣1=﹣1,
∴点C的坐标为(0,﹣1).
设线段BC所在直线的解析式为y=kx+b,
将B(3,0)、C(0,﹣1)代入y=kx+b,
,解得:,
∴线段BC所在直线的解析式为y=x﹣1.
∵点E在△ABC内(含边界),
∴,
解得:≤t≤.
(3)当x<或x>3时,y=﹣x2+x﹣1;
当≤x≤3时,y=﹣x2+x﹣1.
假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.
①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),
∵以CQ为直径的圆与x轴相切于点P,
∴CP⊥PQ,
∴CQ2=CP2+PQ2,
即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,
整理,得:m1=,m2=,
∴点P的坐标为(,0)或(,0);
②当≤m≤3时,点Q的坐标为(m,x2-x +1)(如图2),
∵以CQ为直径的圆与x轴相切于点P,
∴CP⊥PQ,
∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,
整理,得:11m2﹣28m+12=0,
解得:m3=,m4=2,
∴点P的坐标为(,0)或(1,0).
综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c经过点A(﹣2,0),B(﹣8,0),C(﹣4,4).
(1)求这个抛物线的表达式;
(2)如图2,一把宽为2的直尺的右边缘靠在直线x=﹣4上,当直尺向左平移过程中刻度线0始终在x轴上,直尺的右边边缘与抛物线和直线BC分别交于G、D点,直尺的左边边缘与抛物线和直线BC分别交于F、E点,当图中四边形DEFG是平行四边形时,此时直尺左边边缘与直线BC的交点E的刻度是多少?
(3)如图3,在直线x=﹣4上找一点K,使得∠ACP+∠AKC=∠ABC(直线x=﹣4与x轴交于P点),请直接写出K点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举行全体学生“汉字听写”比赛,每位学生听写汉字个.随机抽取了部分学生的听写结果,绘制成如下的图表:
组别 | 正确字数 | 人数 |
根据以上信息完成下列问题:
()统计表中的__________,__________,并补全直方图.
()扇形统计图中“组”所对应的圆心角的度数是__________.
()已知该校共有名学生,如果听写正确的字的个数少于个定为不合格,请你估计该校本次听写比赛不合格的学生人数.
各组别人数分布比例 | |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD是梯形,AB∥CD,AB=BC=DA=1,CD=2,按图中所示的规律,用2009个这样的梯形镶嵌而成的四边形的周长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为( )
A. (﹣2,3) B. (﹣3,2) C. (3,﹣2) D. (2,﹣3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.
(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(2)当四边形ABCD是平行四边形时,如图2,已知AC=BD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;
(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,放置在水平桌面上的台灯灯臂AB长为42cm,灯罩BC长为32cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com