【题目】某铁件加工厂用如图1的长方形和正方形铁片(长方形的宽与正方形的边长相等)加工成如图2的竖式与横式两种无盖的长方体铁容器.(加工时接缝材料不计)
(1)如果加工竖式铁容器与横式铁容器各1个,则共需要长方形铁片 张,正方形铁片 张.
(2)现有长方形铁片2014张,正方形铁片1176张,如果加工成这两种铁容器,刚好铁片全部用完,那么加工的竖式铁容器、横式铁容器各有多少个?
(3)把长方体铁容器加盖可以加工成为铁盒.现用35张铁板做成与如图相同的长方形铁片和正方形铁片,已知每张铁板可做成3个长方形铁片或4个正方形铁片,也可以将一张铁板做成1个长方形铁片和2个正方形铁片.该如何充分利用这些铁板加工成铁盒,最多可以加工成多少个铁盒?
【答案】(1)共需要长方形铁片7张,正方形铁片3张;(2)加工的竖式容器有100个,横式容器有539个;(3)最多可做19个.
【解析】
(1)一个竖式长方体铁容器需要4个长方形铁皮和1个正方形铁皮;一个横式长方体铁容器需要3个长方形铁皮和2个正方形铁皮;
(2)设加工的竖式铁容器有x个,横式铁容器有y个,由题意得:①两种容器共需长方形铁皮2017张;②两种容器共需正方形铁皮1176张,根据等量关系列出方程组即可;
(3)设做长方形铁片的铁板m张,做正方形铁片的铁板n张,由题意得:①长方形铁片的铁板m张+正方形铁片的铁板n张=35张;②长方形铁片的铁片的总数=正方形铁片总数×2,列出方程组,再解即可.
(1)共需要长方形铁片7张,正方形铁片3张.
(2)设加工的竖式容器有个,横式容器有个.
,
解得.
∴加工的竖式容器有100个,横式容器有539个.
(3)设做长方形铁片的铁板为块,做正方形铁片为铁板为块.
,解得,
∵在这35块铁板中,25块做长方形铁片可做张,9块做正方形铁片可做张,剩下1块可裁出1张长方形铁片和2张正方形铁片,∴共做长方形铁片张,正方形铁片张,∴可做铁盒个.最多可做19个.
科目:初中数学 来源: 题型:
【题目】如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2,∠C=∠E, AE=AC,
(1)求证: △ABC≌△ADE;
(2) 求证:∠2=∠3;
(3)当∠2=90°时,判断△ABD的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的图像如图所示,则①abc;②b2-4ac;③2a+b;④a+b+c这四个式子中,值为负数的有个( )
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.
(1)求证:直线BD与⊙O相切;
(2)若AD:AE= : ,BC=6,求切线BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)
如图,∠1+∠2=1800,∠3=∠4.
求证:EF∥GH.
证明:∵∠1+∠2=1800(已知),
∠AEG =∠1(对顶角相等)
∴ ,
∴AB∥CD( ),
∴∠AEG=∠ ( ),
∵∠3=∠4(已知),
∴∠3+∠AEG=∠4+∠ ,(等式性质)
∴ ,
∴EF∥GH.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,
(1)画出△AB′C′;
(2)写出点B′,C′的坐标;
(3)求出在△ABC旋转的过程中,点C经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的度数;
(2)若CD=2,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索题:
根据前面的规律,回答下列问题:
(1)=__________;
(2)当x=4时,;
(3)求:的值。(请写出解题过程);
(4)求:的值的个位数字。(只写答案)。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com