精英家教网 > 初中数学 > 题目详情
10.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是(  )
A.∠ABP=∠CB.∠APB=∠ABCC.$\frac{AP}{AB}$=$\frac{AB}{AC}$D.$\frac{AB}{BP}$=$\frac{AC}{CB}$

分析 分别利用相似三角形的判定方法判断得出即可.

解答 解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;
B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;
C、当$\frac{AP}{AB}$=$\frac{AB}{AC}$时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;
D、无法得到△ABP∽△ACB,故此选项正确.
故选:D.

点评 此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图1,抛物线经经过原点O(0,0),点B(5,5),对称轴为x=2.

(1)直接写出该抛物线与x轴的另一交点A的坐标;及求出抛物线的解析式(要过程).
(3)如图2,连接OB,在位于x轴下方抛物线的图象上,存在一点C,使得∠BOC=90°.请求出C点坐标.
(3)如图3,若P为线段OB上一个动点,且$\sqrt{2}$≤OP≤3$\sqrt{2}$,设点P的横坐标为m,过点P作x轴的垂线交抛物线与点E,交x轴于点F,连接PA、AE、OE.问在点P运动过程中,四边形OPAE面积的最大值和最小值分别为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.⊙O是△ABC的外接圆,AB是直径,过$\widehat{BC}$的中点P作⊙O的直径PG交弦BC于点D,连接AG、CP、PB.
(1)如图1,若D是线段OP的中点,求∠BAC的度数;
(2)如图2,在DG上取一点K,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;
(3)如图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.
(1)只放入大球,且个数为x,求y与x的函数关系式(不必写出x的范围);
(2)仅放入6个大球后,开始放入小球,且小球个数为x
①求y与x的函数关系式(不必写出x范围);
②限定水面高不超过260毫米,最多能放入几个小球?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,AB=AC,点E,F分别是边AB,AC的中点,点D在边BC上.若DE=DF,AD=2,BC=6,求四边形AEDF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在?ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.
(1)求证:AE=AF;
(2)求∠EAF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.在以O为圆心3cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则该菱形的边长等于3cm;弦AC所对的弧长等于2π或4πcm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列运算中,正确的是(  )
A.3a+2b=5abB.2a3+3a2=5a5C.3a2b-3ba2=0D.5a2-4a2=1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.化简求值:$\frac{{x}^{2}-1}{{x}^{2}-2x+1}$÷(x+1),其中x=$\sqrt{2}$+1.

查看答案和解析>>

同步练习册答案