精英家教网 > 初中数学 > 题目详情

【题目】已知:一次函数y=3x﹣2的图象与某反比例函数的图象的一个公共点的横坐标为1.
(1)求该反比例函数的解析式;
(2)将一次函数y=3x﹣2的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;
(3)请直接写出一个同时满足如下条件的函数解析式: ①函数的图象能由一次函数y=3x﹣2的图象绕点(0,﹣2)旋转一定角度得到;
②函数的图象与反比例函数的图象没有公共点.

【答案】
(1)解:把x=1代入y=3x﹣2,得y=1,

设反比例函数的解析式为

把x=1,y=1代入得,k=1,

∴该反比例函数的解析式为


(2)解:平移后的图象对应的解析式为y=3x+2,

解方程组 ,得

∴平移后的图象与反比例函数图象的交点坐标为( ,3)和(﹣1,﹣1)


(3)解:y=﹣2x﹣2.

(结论开放,常数项为﹣2,一次项系数小于﹣1的一次函数均可)


【解析】(1)先求出两函数的交点坐标,利用待定系数法即可求得反比例函数的解析式;(2)平移后的图象对应的解析式为y=3x+2,联立两函数解析式,进而求得交点坐标;(3)常数项为﹣2,一次项系数小于﹣1的一次函数均可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了迎接郑州市第二届“市长杯”青少年校园足球超级联赛,某学校组织了一次体育知识竞赛.每班选25名同学参加比赛,成绩分别为ABCD四个等级,其中相应等级得分依次记为100分、90分、80分、70分.学校将八年级一班和二班的成绩整理并绘制成统计图,如图所示.

(1)把一班竞赛成绩统计图补充完整;

(2)写出下表中abc的值:

(3)根据(2)的结果,请你对这次竞赛成绩的结果进行分析.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据: ≈1.41, ≈1.73).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC= ,则四边形MABN的面积是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察分析下列方程:① ,② ,③ ;请利用它们所蕴含的规律,求关于x的方程 (n为正整数)的根,你的答案是:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点A(﹣2n)在x轴上,则点Bn+1n1)在(

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程);
(2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB;
(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读求绝对值不等式|x|<3|x|>3的解集的过程:

因为|x|<3,从如图1所示的数轴上看:大于-3而小于3的数的绝对值是小于3的,所以|x|<3的解集是-3<x<3;

因为|x|>3,从如图2所示的数轴上看:小大于-3的数和大于3的数的绝对值是大于3的,所以|x|>3的解集是x<-3x>3.

解答下面的问题:

(1)不等式|x|<a(a>0)的解集为______;不等式|x|>a(a>0)的解集为______.

(2)解不等式|x-5|<3;

(3)解不等式|x-3|>5.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求下列各式中的x

1x30.0270

2)(x229

查看答案和解析>>

同步练习册答案