精英家教网 > 初中数学 > 题目详情

【题目】
(1)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD:GC:EB的结果(不必写计算过程);
(2)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD:GC:EB;
(3)把图(2)中的正方形都换成矩形,如图(3),且已知DA:AB=HA:AE=m:n,此时HD:GC:EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).

【答案】
(1)解:连接AG,

∵正方形AEGH的顶点E、H在正方形ABCD的边上,

∴∠GAE=∠CAB=45°,AE=AH,AB=AD,

∴A,G,C共线,AB﹣AE=AD﹣AH,

∴HD=BE,

∵AG= = AE,AC= = AB,

∴GC=AC﹣AG= AB﹣ AE= (AB﹣AE)= BE,

∴HD:GC:EB=1: :1;


(2)解:连接AG、AC,

∵△ADC和△AHG都是等腰直角三角形,

∴AD:AC=AH:AG=1: ,∠DAC=∠HAG=45°,

∴∠DAH=∠CAG,

∴△DAH∽△CAG,

∴HD:GC=AD:AC=1:

∵∠DAB=∠HAE=90°,

∴∠DAH=∠BAE,

在△DAH和△BAE中,

∴△DAH≌△BAE(SAS),

∴HD=EB,

∴HD:GC:EB=1: :1


(3)解:有变化,

连接AG、AC,DA:AB=HA:AE=m:n,

∵∠ADC=∠AHG=90°,

∴△ADC∽△AHG,

∴AD:AC=AH:AG=m: ,∠DAC=∠HAG,

∴∠DAH=∠CAG,

∴△DAH∽△CAG,

∴HD:GC=AD:AC=m:

∵∠DAB=∠HAE=90°,

∴∠DAH=∠BAE,

∵DA:AB=HA:AE=m:n,

∴△ADH∽△ABE,

∴DH:BE=AD:AB=m:n,

∴HD:GC:EB=m: :n


【解析】(1)首先连接AG,由正方形AEGH的顶点E、H在正方形ABCD的边上,易证得∠GAE=∠CAB=45°,AE=AH,AB=AD,即A,G,C共线,继而可得HD=BE,GC= BE,即可求得HD:GC:EB的值;(2)连接AG、AC,由△ADC和△AHG都是等腰直角三角形,易证得△DAH∽△CAG与△DAH≌△BAE,利用相似三角形的对应边成比例与正方形的性质,即可求得HD:GC:EB的值;(3)由DA:AB=HA:AE=m:n,易证得△ADC∽△AHG,△DAH∽△CAG,△ADH∽△ABE,利用相似三角形的对应边成比例与勾股定理即可求得HD:GC:EB的值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC在方格纸中,

(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;

(2)把ABC向右平移6个单位长度,再向上平移2个单位长度,画出平移后的图 A′B′C′;

(3)计算A′B′C′的面积S .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图Rt△ABCRt△A′B′C′∠C∠C′90°那么在下列各条件中不能判定Rt△ABC≌Rt△A′B′C′的是( )

A. ABA′B′5BCB′C′3 B. ABB′C′5∠A∠B′40°

C. ACA′C′5BCB′C′3 D. ACA′C′5∠A∠A′40°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:一次函数y=3x﹣2的图象与某反比例函数的图象的一个公共点的横坐标为1.
(1)求该反比例函数的解析式;
(2)将一次函数y=3x﹣2的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;
(3)请直接写出一个同时满足如下条件的函数解析式: ①函数的图象能由一次函数y=3x﹣2的图象绕点(0,﹣2)旋转一定角度得到;
②函数的图象与反比例函数的图象没有公共点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列调查中,比较适合用全面调查(普查)方式的是( ).

A.某灯具厂节能灯的使用寿命

B.全国居民年人均收入

C.某校今年初中生育体中考的成绩

D.全国快递包装产生的垃圾数量

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有如下命题,其中假命题有( ).

负数没有平方根;

同位角相等;

对顶角相等;

如果一个数的立方根是这个数本身,那么这个数是0

A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点P′是由点P23)先向左平移3个单位,再向下平移2个单位得到的,则点P′的坐标是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个扇形统计图中,某部分所对应的扇形圆心角为72°,则这部分所占总体的百分比为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形ABCD.如图所示,已知迎水坡面AB的长为16米,∠B=60°,背水坡面CD的长为 米,加固后大坝的横截面积为梯形ABED,CE的长为8米.

(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?
(2)求加固后的大坝背水坡面DE的坡度.

查看答案和解析>>

同步练习册答案