精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线y= x2 x﹣ 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.

(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;
(3)点G是线段CE的中点,将抛物线y= x2 x﹣ 沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.

【答案】
(1)

解:∵y= x2 x﹣

∴y= (x+1)(x﹣3).

∴A(﹣1,0),B(3,0).

当x=4时,y=

∴E(4, ).

设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:

解得:k= ,b=

∴直线AE的解析式为y= x+


(2)

解:设直线CE的解析式为y=mx﹣ ,将点E的坐标代入得:4m﹣ = ,解得:m=

∴直线CE的解析式为y= x﹣

过点P作PF∥y轴,交CE与点F.

设点P的坐标为(x, x2 x﹣ ),则点F(x, x﹣ ),

则FP=( x﹣ )﹣( x2 x﹣ )= x2+ x.

∴△EPC的面积= ×( x2+ x)×4=﹣ x2+ x.

∴当x=2时,△EPC的面积最大.

∴P(2,﹣ ).

如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.

∵K是CB的中点,

∴k( ,﹣ ).

∵点H与点K关于CP对称,

∴点H的坐标为( ,﹣ ).

∵点G与点K关于CD对称,

∴点G(0,0).

∴KM+MN+NK=MH+MN+GN.

当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.

∴GH= =3.

∴KM+MN+NK的最小值为3.


(3)

解:如图3所示:

∵y′经过点D,y′的顶点为点F,

∴点F(3,﹣ ).

∵点G为CE的中点,

∴G(2, ).

∴FG= =

∴当FG=FQ时,点Q(3, ),Q′(3, ).

当GF=GQ时,点F与点Q″关于y= 对称,

∴点Q″(3,2 ).

当QG=QF时,设点Q1的坐标为(3,a).

由两点间的距离公式可知:a+ = ,解得:a=﹣

∴点Q1的坐标为(3,﹣ ).

综上所述,点Q的坐标为(3, )或′(3, )或(3,2 )或(3,﹣ ).


【解析】(1)抛物线的解析式可变形为y= (x+1)(x﹣3),从而可得到点A和点B的坐标,然后再求得点E的坐标,设直线AE的解析式为y=kx+b,将点A和点E的坐标代入求得k和b的值,从而得到AE的解析式;(2)设直线CE的解析式为y=mx﹣ ,将点E的坐标代入求得m的值,从而得到直线CE的解析式,过点P作PF∥y轴,交CE与点F.设点P的坐标为(x, x2 x﹣ ),则点F(x, x﹣ ),则FP= x2+ x.由三角形的面积公式得到△EPC的面积=﹣ x2+ x,利用二次函数的性质可求得x的值,从而得到点P的坐标,作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.然后利用轴对称的性质可得到点G和点H的坐标,当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH;(3)由平移后的抛物线经过点D,可得到点F的坐标,利用中点坐标公式可求得点G的坐标,然后分为QG=FG、QG=QF,FQ=FQ三种情况求解即可.
【考点精析】利用二次函数的性质对题目进行判断即可得到答案,需要熟知增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校阳光足球俱乐部计划购进一批甲、乙两种型号的足球,乙型足球每个进价比甲型足球每个进价多10元,若购进甲型足球3个和乙型足球5个,共需要资金370元.

1)求甲、乙两种型号的足球进价各是多少元?

2)该商店计划购进这两种型号的足球共50个,而可用于购买这两种型号的足球资金不少于2250元,但又不超过2270元.该商店有几种进货方案?

3)已知商店出售一个甲种足球可获利6元,出售一个乙种足球可获利10元,试问在(2)的条件下,商店采用哪种方案可获利最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学新建了一栋7层的教学大楼,每层楼有8间教室,进出这栋大楼共有八道门,其中四道正门大小相同,四道侧门大小也相同.安全检查中,对八道门进行了测试:当同时开启一道正门和两道侧门时,2分内可以通过560名学生;当同时开启一道正门和一道侧门时,4分内可以通过800名学生.

1)平均每分内一道正门和一道侧门分别可以通过多少名学生?

2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低30%.安全检查规定:在紧急情况下全大楼的学生应在5分内通过这八道门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问建造的这八道门是否符合安全规定?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.
(1)求证:△AGE≌△BGF;
(2)试判断四边形AFBE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料I:

教材中我们学习了:若关于的一元二次方程的两根为,根据这一性质,我们可以求出己知方程关于的代数式的值.

问题解决:

1)已知为方程的两根,则: __ ___ _,那么_ (请你完成以上的填空)

阅读材料:II

已知,且.求的值.

:可知

,即

是方程的两根.

问题解决:

2)若

3)已知.求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的顶点AC分别在y轴和x轴上,边BC的中点Fy轴上,若反比例函数y的图象恰好经过CD的中点E,则OA的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.

(1)如图1,若P(1,﹣3),B(4,0).
①求该抛物线的解析式;
②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;
(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时, 是否为定值?若是,试求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)2-1+sin30°-|-2|;
(2)(-1)0-|3-π|+ .

查看答案和解析>>

同步练习册答案