精英家教网 > 初中数学 > 题目详情

【题目】瑞安市文化创意实践学校是一所负责全市中小学生素质教育综合实践活动的公益类事业单位,学校目前可开出:创意手工创意表演、科技制作(创客)、文化传承、户外拓展等5个类别20多个项目课程.

1)学校3月份接待学生1000人,5月份增长到2560人,求该学校接待学生人数的平均月增长率是多少?

2)在参加“创意手工”体验课程后,小明发动本校同学将制作的作品义卖募捐.当作品卖出的单价是2元时,每天义卖的数量是150件;当作品的单价每涨高1元时,每天义卖的数量将减少10件.问:在作品单价尽可能便宜的前提下,当单价定为多少元时,义卖所得的金额为600元?

【答案】1)该学校接待学生人数的增长率为60%;(2)单价定为5元.

【解析】

1)设平均月增长率为,根据题意得到一元二次方程即可求解;

2)设定价为元,求出可卖出的件数,根据义卖所得的金额为600元得到一元二次方程即可求解.

解:(1)设平均月增长率为,则根据题意得

解得(舍),

该学校接待学生人数的增长率为60%

2)设定价为元,此时可卖出件,

可列方程,解得

作品单价要尽可能便宜,

单价定为5元.

答:当单价定为5元时,义卖所得的金额为600元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知实数 a、b、c满足 a+b2=1,a+1=c2﹣2c,若 m=2a2+5b2,实数 m的取值范围是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组开展课外活动如图小明从点M出发以15米/秒的速度沿射线MN方向匀速前进2秒后到达点B此时他AB在某一灯光下的影长为MB继续按原速行走2秒到达点D此时他CD在同一灯光下的影子GD仍落在其身后并测得这个影长GD为12米然后他将速度提高到原来的15倍再行走2秒到达点F此时点ACE三点共线

1请在图中画出光源O点的位置并画出小明位于点F时在这个灯光下的影长FH不写画法

2求小明到达点F时的影长FH的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:

(1)求参加次调查的学生人数,并补全条形统计图;

(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;

(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数,试问:按这种方法能组成哪些位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】王勇和李明两位同学在学习概率时,做投掷骰子(质地均匀的正方体)实验,他们共做了30次实验,实验的结果如下:

朝上的点数

1

2

3

4

5

6

出现的次数

2

5

6

4

10

3

(1)分别计算这30次实验中“3点朝上的频率和“5点朝上的频率;

(2)王勇说:根据以上实验可以得出结论:由于5点朝上的频率最大,所以一次实验中出现5点朝上的概率最大;李明说:如果投掷300次,那么出现6点朝上的次数正好是30.试分别说明王勇和李明的说法正确吗?并简述理由;

(3)现王勇和李明各投掷一枚骰子,请用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是( )

A. 随着抛掷次数的增加,正面朝上的频率越来越小

B. 当抛掷的次数很大时,正面朝上的次数一定占总抛掷次数的

C. 不同次数的试验,正面朝上的频率可能会不相同

D. 连续抛掷11次硬币都是正面朝上,第12次抛掷出现正面朝上的概率小于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=90°,AB=12,BC=24,动点P从点A开始沿边AB向终点B以每秒2个单位长度的速度移动,动点Q从点B开始沿边BC以每秒4个单位长度的速度向终点C移动,如果点P、Q分别从点A、B同时出发,那么△PBQ的面积S随出发时间t(s)如何变化?写出函数关系式及t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+c与直线y=3相交于点AB,与y轴相交于点C(0,﹣1),其中点A的横坐标为﹣4.

(1)计算ac的值;

(2)求出抛物线yax2+cx轴的交点坐标;

(3)利用图象,当0≤ax2+c≤3时,直接写出自变量x的取值范围.

查看答案和解析>>

同步练习册答案