精英家教网 > 初中数学 > 题目详情
1.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.
(1)【特殊情况,探索结论】
如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE=DB(填“>”、“<”或“=”).
(2)【特例启发,解答题目】
如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE=DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).
(3)【拓展结论,设计新题】
在等边三角形ABC中,点E在直线AB上,点D在直线CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).

分析 (1)由E为等边三角形AB边的中点,利用三线合一得到CE垂直于AB,且CE为角平分线,由ED=EC,利用等边对等角及等腰三角形的性质得到一对角相等,利用等角对等边即可得证;
(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,由三角形ABC为等边三角形,得到三角形AEF为等边三角形,进而得到AE=EF=AF,BE=FC,再由ED=EC,以及等式的性质得到夹角相等,利用SAS得到三角形BDE与三角形EFC全等,利用全等三角形对应边相等得到DB=EF,等量代换即可得证;
(3)点E在AB延长线上时,如图所示,同理可得△DBE≌△EFC,由BC+DB求出CD的长即可.

解答 解:(1)当E为AB的中点时,AE=DB;
(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,
证明:∵△ABC为等边三角形,
∴△AEF为等边三角形,
∴AE=EF,BE=CF,
∵ED=EC,
∴∠D=∠ECD,
∵∠DEB=60°-∠D,∠ECF=60°-∠ECD,
∴∠DEB=∠ECF,
在△DBE和△EFC中,
$\left\{\begin{array}{l}{DE=CE}\\{∠DEB=∠ECF}\\{BE=FC}\end{array}\right.$,
∴△DBE≌△EFC(SAS),
∴DB=EF,
则AE=DB;
(3)点E在AB延长线上时,如图所示,同理可得△DBE≌△EFC,
∴DB=EF=2,BC=1,
则CD=BC+DB=3.
故答案为:(1)=;(2)=

点评 此题考查了等边三角形的判定与性质,全等三角形的判定与性质,以及等腰三角形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.p的3倍的$\frac{1}{4}$是$\frac{3}{4}p$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知关于x的方程kx-6=2x的解为整数,则所有满足条件的正整数k的值为8,5,4,3,1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.一元二次方程3x2-23=-10x的二次项系数为:3,一次项系为:10,常数项为:-23.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.若α为锐角,且sinα=$\frac{4}{5}$,则tanα为(  )
A.$\frac{9}{25}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.比较下列实数的大小(填上>、<或=)
①-$\root{3}{3}$<-$\sqrt{2}$; ②$\frac{\sqrt{5}-1}{2}$>$\frac{1}{2}$;③2$\sqrt{11}$<3$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最多是(  )
A.11个B.12个C.13个D.14个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.若M(-$\frac{1}{2}$,y1)、N(-$\frac{1}{4}$,y2)、P($\frac{1}{2}$,y3)三点都在函数y=-$\frac{1}{x}$的图象上,则y1、y2、y3的大小关系为(  )
A.y2>y3>y1B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1

查看答案和解析>>

同步练习册答案