精英家教网 > 初中数学 > 题目详情

【题目】在长、宽都为4m,高为3m的房间的正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8cm,灯泡离地面2m,为了使光线恰好照在墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,≈1.414)

【答案】灯罩的直径BC约为0. 23m.

【解析】

根据题意画出几何图,则AN=0.08m,AM=2m,计算出DE=4m,再证明△ABC∽△ADE,然后利用相似比可计算出BC.

解:如图光线恰好照在墙角D. E,AN=0.08m,AM=2m,

由于房间的地面是边长为4m的正方形DE=4m,

∵BC∥DE,

∴△ABC∽△ADE,

,即

∴BC≈0.23(m).

答:灯罩的直径BC约为0.23m.

故答案为:约为0.23m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中.

利用尺规作图,在BC边上求作一点P,使得点PAB的距离的长等于PC的长;

利用尺规作图,作出中的线段PD.

要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有(

A.一处B.二处C.三处D.四处

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,等边三角形OAB的顶点A的坐标为(5,0),顶点B在第一象限,函数y=(x>0)的图象分别交边OA、AB于点C、D.若OC=2AD,则k=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是( )

A. 0.324πm2 B. 0.288πm2 C. 1.08πm2 D. 0.72πm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.

(1)若乙队单独施工,需要多少天才能完成该项工程?

(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系 xOy 中,抛物线 y = kx 2 - 2k 2 x -3 y 轴于 A 点,交直线 x=-4 B 点.

(1)抛物线的对称轴为直线 x=______(用含 k 的代数式表示);

(2)若 AB // x 轴,求抛物线的解析式;

(3)当-4<k<0时,记抛物线在 AB 之间的部分为图象 G(包含 AB 两点),若对于图象 G 上任意一点 PxPyP ), yP ≥-3 ,结合函数图象写出 k 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).

(1)求二次函数的解析式.

(2)求函数图象的顶点坐标及D点的坐标.

(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求BDE的面积.

(4)抛物线上有一个动点P,与A,D两点构成ADP,是否存在SADP=SBCD?若存在,请求出P点的坐标;若不存在.请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学七班共有45人,该班计划为每名学生购买一套学具,超市现有AB两种品牌学具可供选择已知1A学具和1B学具的售价为45元;2A学具和5B学具的售价为150元.

B两种学具每套的售价分别是多少元?

现在商店规定,若一次性购买A型学具超过20套,则超出部分按原价的6折出售设购买A型学具a且不超过30套,购买AB两种型号的学具共花费w元.

请写出wa的函数关系式;

请帮忙设计最省钱的购买方案,并求出所需费用.

查看答案和解析>>

同步练习册答案