【题目】已知,正方形,,抛物线为常数),顶点为.
(1)拋物线经过定点坐标是___ __,顶点的坐标(用的代数式表示)是____ _.
(2)若抛物线(为常数)与正方形的边有交点,则的取值范围是___ _.
(3)若时,求的值.
【答案】(1),;(2);(3)或
【解析】
(1)判断函数图像过定点,可以分析代入x的值使得含m的同类项合并后系数为0;
(2)由(1)中的m表示的顶点坐标,可以得到m变化时,抛物线顶点在上运动,分析该函数图像和正方形ABCD的顶点位置关系即可解答;
(3)需要分类讨论,由已知点M在过点B且与AB夹角为45°的直线与抛物线在的交点上,可解决问题.
解:
当时,
抛物线经过定点坐标是.
抛物线的解析式为,
顶点的对称轴为直线
当时,
故答案为: ;
设,
则,带入=
整理得
即抛物线的顶点在抛物线上运动.其对称轴为直线,
当抛物线顶点直线右侧时即时,
抛物线与正方形无交点.
当时,观察抛物线的顶点所在抛物线恰好过点
,此时
当抛物线过点时
得
抛物线为常数)与正方形的边有交点时
的范围为:
由抛物线顶点在抛物线上运动
当点在线段上方时,
过点且使的直线解析式为
联立方程
得交点横坐标的(舍去)
当点在线段下方时
过点且使的直线解析式为
联立方程
得交点横坐标的(舍去)
的值为或
科目:初中数学 来源: 题型:
【题目】已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线解析式;
(2)当点P运动到什么位置时,△PAB的面积最大?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三点,其中t>0,函数的图象分别与线段BC,AC交于点P,Q.若S△PAB-S△PQB=t,则t的值为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在⊙O中,AB为直径,C为⊙O上一点.
(1)如图1,过点C作⊙O的切线,与AB延长线相交于点P,若∠CAB=27°,求∠P的度数;
(2)如图2,D为弧AB上一点,OD⊥AC,垂足为E,连接DC并延长,与AB的延长线交于点P,若∠CAB=10°,求∠P的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,二次函数(m,n为常数且m≠0)
(1)若n=0,请判断该函数的图像与x轴的交点个数,并说明理由;
(2)若点A(n+5,n)在该函数图像上,试探索m,n满足的条件;
(3)若点(2,p),(3,q),(4,r)均在该函数图像上,且p<q<r,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:
(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;
(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;
(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;
(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,甲、乙两人分别从两地出发,相向而行,已知甲先出发4分钟后,乙才出发,他们两人在之间的地相遇,相遇后,甲立即返回地,乙继续向地前行.甲到达地时停止行走,乙到达地是也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,则下列结论错误的是( )
A.两地相距2480米B.甲的速度是60米/分钟,乙的速度是80米/分钟
C.乙出发17分钟后,两人在地相遇D.乙到达地时,甲与地相距的路程是300米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=mx+4的图象与x轴相交于点A,与反比例函数y= (x>0)的图象相交于点B(1,6).
(1)求一次函数和反比例函数的解析式;
(2)设点P是x轴上一点,若S△APB=18,直接写出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com