精英家教网 > 初中数学 > 题目详情
9.已知BC是⊙O的直径,△ABC为等腰三角形,请仅用无刻度的直尺完成下列作图.
(1)在图1中,画出菱形ABDC;
(2)在图2中,画出菱形ABDC.

分析 (1)过点A作圆的直径与圆的交点即为点D;
(2)过AB、AC与圆的交点作圆的直径,与圆相交于两点,再以点B、C为端点、过所得两点作射线,交点即为点D.

解答 解:(1)如图1,菱形ABDC即为所求;


(2)如图2,菱形ABDC即为所求.

点评 本题主要考查作图-复杂作图,熟练掌握圆周角定理、等腰三角形的性质及菱形的判定与性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为m厘米的大正方形,两块是边长都为n厘米的小正方形,五块是长宽分别是m厘米、n厘米的全等小矩形,且m>n.
(1)用含m、n的代数式表示切痕的总长为6m+6n厘米;
(2)若每块小矩形的面积为48厘米2,四个正方形的面积和为200厘米2,试求(m+n)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.分解因式:
(1)12a2b-18ab2-24a3b3
(2)6y2+18y+6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知抛物线C:y=$\frac{1}{4}$x2+bx+c在x=1和x=-1时的函数值相等,且x=2时y=1,P(x,y)为抛物线C上任一点,F(0,1)为y轴上一点,PQ与直线y=-1垂直交于点Q
(1)求出抛物线解析式;
(2)求证:PF=PQ;
(3)若直线y=kx+b过点F(0,1)且与抛物线C交于A、B两点,试判断以AB为直径的圆与直线y=-1位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在等边△ABC中,D为AB上一点,连接CD,E为CD上一点,∠BED=60°.
(1)延长BE交AC于F,求证:AD=CF;
(2)若$\frac{AD}{BD}$=$\frac{2}{3}$,连接AE,BE,求$\frac{AE}{BE}$的值;
(3)若E为CD的中点,直接写出$\frac{AD}{BD}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知两个边长为2的正方形,其中一个正方形的一个顶点与另一个正方形的中心O1重合,则重合部分的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知a=$\sqrt{n+3}$-$\sqrt{n+1}$,b=$\sqrt{n+2}$-$\sqrt{n}$(n>0),试比较a,b的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,OP=1,过P作PP1⊥OP,且PP1=1,得OP1=$\sqrt{2}$;再过P1作P1P2⊥OP1,且P1P2=1,得OP2=$\sqrt{3}$;又过P2作P2P3⊥OP2,且P2P3=1,得OP3=2;…依此法继续作下去,得OP2016=$\sqrt{2017}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.有理数a,b在数轴上的位置如图所示,在-a,b-a,a+b,0中,最大的是(  )
A.-aB.0C.a+bD.b-a

查看答案和解析>>

同步练习册答案