【题目】探究与发现:
如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX= °;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.
【答案】(1)∠BDC=∠A+∠B+∠C,理由见解析;(2)①40°;②90°;③70°.
【解析】
(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;
(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;
②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=(∠ADB+∠AEB)+∠A,易得答案.
③由②方法,进而可得答案.
解:(1)连接AD并延长至点F,
由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;
∵∠BDC=∠BDF+∠CDF,
∴∠BDC=∠BAD+∠B+∠C+∠CAD.
∵∠BAC=∠BAD+∠CAD;
∴∠BDC=∠BAC +∠B+∠C;
(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,
又因为∠A=50°,∠BXC=90°,
所以∠ABX+∠ACX=90°﹣50°=40°;
②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,
∵∠DAE=50°,∠DBE=130°,
∴∠ADB+∠AEB=80°;
∴∠DCE=(ADB+∠AEB)+A=40°+50°=90°;
③由②知,∠BG1C=(ABD+∠ACD)+A,
∵∠BG1C=77°,
∴设∠A为x°,
∵∠ABD+∠ACD=140°﹣x°,
∴(40﹣x)x=77,
∴14﹣x+x=77,
∴x=70,
∴∠A为70°.
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。
(1)若∠ACD=114°,求∠MAB的度数;
(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC,G为三角形外一点,且△GBC为等边三角形.
(1)求证:直线AG垂直平分BC;
(2)以AB为一边作等边△ABE(如图2),连接EG、EC,试判断△EGC是否构成直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若规定这样一种运算:a△b=(|ab|+a+b),例如:2△3=(|23|+2+3)=3
(1)求3△4和(-3)△(-2)的值;
(2)将1,2,3,…,50这50个自然数,任意分为25组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式(|ab|+a+b)中进行计算,求出其结果,25组数代入后可求得25个值,求这25个值的和的最大值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.
(1)如图1,若∠DAC=2∠ABC,AC=BC,四边形ABCD是平行四边形,则∠ABC= ;
(2)如图2,若∠ABC=30°,△ACD是等边三角形,AB=3,BC=4.求BD的长;
(3)如图3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之间距离是否有最大值?如有求出最大值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90° 时,可知△ABP∽△PCD.(不要求证明)
(1)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.
(2)拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上若∠B=∠C=∠DPE=45°,BC=8,CE=6,则DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】公园的门票价格规定如下表:
购票张数 | 1 到 50 张 | 51 到 100 张 | 101 到 150张 | 150 张以上 |
每张票的价格 | 12 元 | 10 元 | 8 元 | 超过 150 张的部分 7 元 |
某校七年级(1)(2)两个班共 104 人,其中(1)班 40 多人,不足 50 人,经估算,如果两个班都以班为单位购票,则一共应付 1136 元,问:
(1)若两班联合起来作为一个团体购票,可省多少钱?
(2)两班学生各有多少人?
(3)若七年级(3)班有 n 人(46<n<55)与(1),(2)班一起去游园,某商家赞助,支付三个班的所有门票费,则该商家最少花费 元(用含 n 的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD的边AB在x轴上,点C的坐标为(﹣5,4),点D在y轴的正半轴上,经过点A的直线y=x﹣1与y轴交于点E,将直线AE沿y轴向上平移n(n>0)个单位长度后,得到直线l,直线l经过点C时停止平移.
(1)点A的坐标为 ,点B的坐标为 ;
(2)若直线l交y轴于点F,连接CF,设△CDF的面积为S(这里规定:线段是面积为0的三角形),求S与n之间的函数关系式,并写出n的取值范围;
(3)易知AE⊥AD于点A,若直线l交折线AD﹣DC于点P,当△AEP为直角三角形时,请直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,数轴上有A、B、C三点,且AB=3BC,若B为原点,A点表示数为6.
(1)求C点表示的数;
(2)若数轴上有一动点P,以每秒1个单位的速度从点C向点A匀速运动,设运动时间为t秒,请用含t的代数式表示PB的长;
(3)在(2)的条件下,点P运动的同时有一动点Q从点A以每秒2个单位的速度向点C匀速运动,当P、Q两点相距2个单位长度时,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com