【题目】二次函数,当且时,的最小值为,最大值为,则的值为( )
A. 2B. C. D.
【答案】B
【解析】
二次函数的开口向下,对称轴为x=2,当x<2时,y随x的增大而增大,当x>2时,y随x的增大而减小,因为m≤x≤n且mn<0,可知m<0,n>0,需要分两种情况:①m≤0≤x≤n<2,②m≤0≤x≤2≤n讨论函数的最值情况;对于①,当x=m时y取最小值,当x=n时y取最大值,对于②,当x=m或n时y取最小值,当x=2时y取最大值,由此求出m、n的值,注意检验是否符合取值范围.
二次函数的大致图象如下
①当时,当x=m时y取最小值,即,
解得m=3(舍去)或者m=-1,
当x=n时y取最大值,即,
解得n=3或者n=-1(均不符合题意,舍去);
②当时,当x=m时y取最小值,即,
解得m=3(舍去)或者m=-1,
当x=2时,y取得最大值7,即2n=7,解得n=,
所以.
故选B.
科目:初中数学 来源: 题型:
【题目】2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.
月份x | … | 3 | 4 | 5 | 6 | … |
售价y1/元 | … | 12 | 14 | 16 | 18 | … |
(1)求y1与x之间的函数关系式.
(2)求y2与x之间的函数关系式.
(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,O为坐标原点,点A(a,0),B(m,n),C(p,n),其中m>p>0,n>0,点A,C在直线y=﹣2x+10上,AC=2,OB平分∠AOC.
(1)求△OAC的面积;
(2)求证:四边形OABC是菱形;
(3)射线OB上是否存在点P,使得△PAC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,(图1,图2),四边形ABCD是边长为4的正方形,点E在线段BC上,∠AEF=90°,且EF交正方形外角平分线CP于点F,交BC的延长线于点N, FN⊥BC.
(1)若点E是BC的中点(如图1),AE与EF相等吗?
(2)点E在BC间运动时(如图2),设BE=x,△ECF的面积为y。
①求y与x的函数关系式;
②当x取何值时,y有最大值,并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,二次函数y=x2-2x-3的部分图象与x轴交于点A,B(A在B的左边),与y轴交于点C,连接BC,D为顶点.
(1)求∠OBC的度数;
(2)在x轴下方的抛物线上是否存在一点Q,使△ABQ的面积等于5?如存在,求Q点的坐标;若不存在,说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:如图1:在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC、BC、CD之间的数量关系,小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B、C分别落在点A、E处(如图2),易证点C、A、E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=
CD,从而得出结论:AC+BC=CD.
(1)简单应用:在图1中,若AC=,BC=2,则CD= .
(2)拓展规律,如图3,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)
(3)如图4,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,直接写出线段PQ与AC的数量关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号).
(1)利用网格作出该圆弧所在圆的圆心D点的位置,并写出D点的坐标为 ;
(2)连接AD、CD,则⊙D的半径为 ,∠ADC的度数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】合肥三十八中为预防秋季疾病传播,对教室进行“薰药消毒”.已知药物在燃烧释放过程中,室内空气中每立方米含药量(毫克)与燃烧时间(分钟)之间的关系如图所示(即图中线段和双曲线在点及其右侧的部分),根据图象所示信息,解答下列问题:
(1)写出从药物释放开始,与之间的函数关系式及自变量的取值范围;
(2)据测定,只有当空气中每立方米的含药量不低于毫克时,对预防才有作用,且至少持续作用分钟以上,才能完全杀死这种病毒,请问这次消毒是否彻底?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com