【题目】2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.
月份x | … | 3 | 4 | 5 | 6 | … |
售价y1/元 | … | 12 | 14 | 16 | 18 | … |
(1)求y1与x之间的函数关系式.
(2)求y2与x之间的函数关系式.
(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?
【答案】(1)y1=2x+6;(2)y2=x2﹣x+;(3)w=﹣x2+x﹣,7月份销售每千克猪肉所第获得的利润最大,最大利润是77元7.
【解析】
(1)设与x之间的函数关系式为,将(3,12)(4,14)代入解方程组即可得到结论;
(2)由题意得到抛物线的顶点坐标为(3,9),设与x之间的函数关系式为:=,将(5,10)代入=得=10,解方程即可得到结论;
(3)由题意得到w==2x+6+x=+x,根据二次函数的性质即可得到结论.
(1)设y1与x之间的函数关系式为y1=kx+b,
将(3,12)(4,14)代入y1得,,
解得:,
∴y1与x之间的函数关系式为:y1=2x+6;
(2)由题意得,抛物线的顶点坐标为(3,9),
∴设y2与x之间的函数关系式为:y2=a(x﹣3)2+9,
将(5,10)代入y2=a(x﹣3)2+9得a(5﹣3)2+9=10,
解得:a=,
∴y2=(x﹣3)2+9=x2﹣x+;
(3)由题意得,w=y1﹣y2=2x+6﹣x2+x﹣=﹣x2+x﹣,
∵﹣<0,
∴w由最大值,
∴当x=﹣=﹣=7时,w最大=﹣×72+×7﹣=7.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于点A(﹣2,0)与点C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.
(1)求该二次函数的解析式;
(2)若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB, PD,BD,AB.请问是否存在点P,使得△BDP的面积恰好等于△ADB的面积?若存在请求出此时点P的坐标,若不存在说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图象经过点C(0,-2),顶点D的坐标为(1,),与轴交于A、B两点.
(1)求抛物线的解析式.
(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.
(3)点F(0,)是轴上一动点,当为何值时,的值最小.并求出这个最小值.
(4)点C关于轴的对称点为H,当取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)(2015黄石)如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.
(1)求BC的长;
(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为 30 米的篱笆 围成.已知墙长为 18 米(如图所示),设这个苗圃园垂直于墙的一边的长为 x 米,若平行于墙的一边长不小 于 8 米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=a(x﹣1)2+4的图象经过点(﹣1,0).
(1)求这个二次函数的解析式;
(2)判断这个二次函数的开口方向,对称轴和顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数中的和满足下表:
] |
(1)请直接写出m的值为_________.
(2)求出这个二次函数的解析式.
(3)当时,则y的取值范围为______________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2﹣4ax+3a.
(1)若a=1,则函数y的最小值为_______.
(2)当1≤x≤4时,y的最大值是4,则a的值为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com