【题目】(7分)(2015黄石)如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.
(1)求BC的长;
(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点E,则DF的长为( )
A. 4.5 B. 5 C. 5.5 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分。请根据以上信息,解答下列问题:
(1)求出每天作业用时是4小时的人数,并补全统计图;
(2)这次调查的数据中,做作业所用时间的众数是 ,中位数是 ,平均数是 ;
(3)若该校共有1500名学生,根据以上调查结果估计该校全体学生每天做作业时间在3小时内(含3小时)的同学共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从
A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.
(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________
(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,
①当P、Q两点运动停止时,求点P和点Q的距离;
②求当t为何值时P、Q两点恰好在途中相遇。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形纸片ABCD中,AB=6,AD=10.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为( )
A.8cmB.6cmC.4cmD.2cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,等腰Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,3),点C的坐标为(1,0),点P为斜边OB上的一个动点,则PA+PC的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC 中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ABE绕点顺时针旋转90后,得到△ACF,连接DF.下列结论中:①∠DAF=45° ②△≌△ ③AD平分∠EDF ④;正确的有______________(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】结合数轴与绝对值的知识回答下列问题:
(1)探究:
①数轴上表示7和1的两点之间的距离是_______.
②数轴上表示﹣2和﹣9的两点之间的距离是________.
(2)归纳:
一般的,数轴上表示数m和数n的两点之间的距离等于_______.
(3)应用:
①若数轴上表示数a的点位于﹣5与4之间,则|a+5|+|a﹣4|的值=________.
②若a表示数轴上的一个有理数,且|a-3|=| a+1|,则a =______.
③若a表示数轴上的一个有理数,且|a+5|+|a﹣4|>9,则有理数a的取值范围是______.
(4)拓展:
已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为70.若当电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距35个单位长度,并写出此时点P所表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com