精英家教网 > 初中数学 > 题目详情
6.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1
(1)点A关于点O中心对称的点的坐标为(-3,-2);
(2)点A1的坐标为(-2,3);
(3)在旋转过程中,求线段AB扫过的面积?

分析 (1)直接根据关于点O中心对称的点的坐标特点写出答案;
(2)首先画出图形,然后根据平面直角坐标系写出点A1的坐标;
(3)利用勾股定理列式求出AO和OB的长,再根据扇形面积公式列式计算即可得解.

解答 解:(1)∵点A(3,2),
∴点A关于点O中心对称的点的坐标为(-3,-2);
(2)作图如下:

由图可知点A1的坐标为(-2,3);
(3)OA=$\sqrt{{2}^{2}+{3}^{2}}$=$\sqrt{13}$,OB=$\sqrt{{1}^{2}+{3}^{2}}$=$\sqrt{10}$,
线段AB扫过的面积=S扇形AOA1-S扇形BOB1=$\frac{90π(\sqrt{13})^{2}}{360}$-$\frac{90π(\sqrt{10})^{2}}{360}$=$\frac{3}{4}$π.

点评 本题考查了利用旋转变换作图,扇形的面积计算,熟练掌握网格结构,准确找出对应点的位置是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.如图,一个转盘被分成7个相同的扇形,颜色分 别为红黄绿三种,指针的位置固定,转动盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向黄色的概率为$\frac{2}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列运算,正确的是(  )
A.a6÷a2=a3B.a2+a2=a4C.(a32=a6D.a3•a3=a9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在我国民间流传着许多诗歌形式的数学算题,这些题目叙述生动、活泼,它们大都是关于方程或方程组的应用题.由于诗歌的语言通俗易懂、雅俗共赏,因而一扫纯数学的枯燥无味之感,令人耳目一新,回味无穷.请根据下列诗意列方程组解应用题.
(1)周瑜寿属:而立之年督东吴,早逝英年两位数;十比个位正小三,个位六倍与寿符;哪位同学算得快,多少年寿属周瑜?诗的意思是:周瑜病逝时的年龄是一个大于30的两位数,其十位数上的数字比个位上的数字小3,个位上的数字的6倍正好等于这个两位数,求这个两位数.
(2)悟空顺风探妖踪,千里只用四分钟,归时四分行六百,风速多少请算清.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,点P是正比例函数y=x与反比例函数y=$\frac{k}{x}$在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知AC,EC分别是四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°.

(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
(i)求证:△CAE∽△CBF;
(ii)若BE=1,AE=2,求CE的长;
(2)如图②,当四边形ABCD和EFCG均为矩形,且$\frac{AB}{BC}$=$\frac{EF}{FC}$=k时,若BE=1,AE=2,CE=3,求k的值;
(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,点O为坐标原点,A点坐标为($\frac{5}{4}$,0),过点A的抛物线y=ax2+bx与直线y=$\frac{3}{4}$x交于点B,且B点纵坐标为$\frac{3}{2}$.
(1)求a、b的值;
(2)点P是第一象限内直线OB下方的抛物线上一点,过点P作PH⊥OB于H,若P点的横坐标为t,线段PH的长为d,求d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,已知M是y轴上的一点,且M点的纵坐标与P点的横坐标相同,过点M作MN∥x轴交PH的延长线于点N,连接ON,过点P作PQ∥x轴交OB于点Q,当∠ONM+∠HPQ-∠MON=90°时,求此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润;
(3)实际进货时,厂家对电冰箱出厂价下调k(0<k<100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是(  )
A.0B.2C.D.

查看答案和解析>>

同步练习册答案