精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系xOy中,已知矩形ABCD的两个顶点B、C的坐标分别是B(1,0)、C(3,0).直线AC与y轴交于点G(0,6).动点P从点A出发,沿线段AB向点B运动.同时动点 Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)求直线AC的解析式;
(2)当t为何值时,△CQE的面积最大?最大值为多少?
(3)在动点P、Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使得以C、Q、E、H为顶点的四边形是菱形?

解:(1)设直线AC的解析式为y=kx+b.
∵直线AC经过G(0,6)、C(3,0)两点,

解这个方程组,得
∴直线AC的解析式为y=-2x+6.
(2)当x=1时,y=4.
∴A(1,4).
∵AP=CQ=t,
∴点P(1,4-t).
将y=4-t代入y=-2x+6中,得点E的横坐标为x=
∴点E到CD的距离为
∴S△CQE===
∴当t=2时,S△CQE最大,最大值为1.
(3)过点E作FM∥DC,交AD于F,交BC于M.
当点H在点E的下方时,连结CH.
∵EM=4-t,
∴HM=4-2t.


∵四边形CQEH为菱形,
∴CH=CQ=t.
在Rt△HMC中,由勾股定理得CH2=HM2+CM2

整理得 13t2-72t+80=0.
解得 ,t2=4(舍).
∴当时,以C,Q,E,H为顶点的四边形是菱形.
当点H在点E的上方时,同理可得当时.以C,Q,E,H为顶点的四边形是菱形.
∴t的值是
分析:(1)设直线AC的解析式为y=kx+b,将G(0,6)、C(3,0)两点代入,即可求出k、b的值,从而得到一次函数解析式.
(2)将△CQE的底和高用含x的代数式表示出来,列出关于x的二次函数解析式,求最值即可.
(3)求出CM的关于t的表达式,根据四边形CQEH为菱形求得H=CQ=t,再利用勾股定理求出t的值即可.
点评:本题考查了一次函数综合题,包括待定系数法求一次函数解析式、二次函数最值、菱形的性质,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案