精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AB=6 cm,BC=8 cm,沿对角线AC将矩形分成两个直角三角形,其中△ABC不动,△ACD沿射线CA的方向以每秒2 cm的速度移动.

(1)在平移过程中,四边形ABCD始终是 (请在下面的四个选项中选择一个你认为正确的序号填在横线上);

①平行四边形 ②矩形 ③菱形 ④正方形

(2)在移动过程中,当移动时间t(秒)为何值时,四边形ABC'D是菱形.

【答案】(1)①;(2)当t=秒时,四边形ABCD是菱形.

【解析】则(1)直接利用平移的性质得出结论即可判断出四边形ABC'D是平行四边形;

(2)先根据勾股定理求出AC=10,再由菱形的性质得出BD⊥AC',OB=OD,AO=OC'.进而由直角三角形的 面积公式即可求出BO,再根据勾股定理求出AO,最后求出CC'即可求出时间.

(1)由平移得,AB=DC,ABDC

∴四边形ABCD是平行四边形,

故选

(2)如图,

,

连接BDAC于点O

RtABC中,AB=6,BC=8,

AC=10,

∵四边形ABCD是菱形,

BDACOB=ODAO=OC.

∵12ACBO=12ABBC

BO=ABBCAC=6×810=245,

RtABO中,AB=6,BO=245,

AO=185,

CO=AO=185,

AC=AO+CO=365,

CC=ACAC=10365=145,

t=145÷2=75,

t=秒时,四边形ABCD是菱形。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把二次函数y=2x2﹣4x+3的图象绕原点旋转180°后得到的图象的解析式为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)数轴上点B表示的数是  ;点P表示的数是  (用含t的代数式表示)

(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?

(3)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A的坐标是4,0,且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.

1求抛物线的表达式;

2在抛物线上是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】xy5xy1则式子x2y2的值是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边为的正方形ABCD绕点A沿逆时针方向旋转30°后得到正方形AEFH,则图中阴影部分的面积为( )

A. B. 3- C. 2- D. 2-

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】﹣21÷﹣7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知(xy)21(xy)249x2y2的值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,完成下列推理过程.

已知:DEAOEBOAOCFBEDO.

证明:CFDO.

证明:∵DEAOBOAO(已知)

∴∠DEA=∠BOA=90°(   )

DEBO(  )

∴∠EDODOF(   )

又∵∠CFBEDO(   )

∴∠DOFCFB(   )

CFDO(   )

查看答案和解析>>

同步练习册答案