【题目】如图,在 Rt△ABC 中,∠BAC=90°,AB=6,AC=8,D 为 AC 上一点,将△ABD 沿 BD 折叠,使点 A 恰好落在 BC 上的 E 处,则折痕 BD 的长是( )
A.5B.C.3 D.
科目:初中数学 来源: 题型:
【题目】已知:如图1,直线与x轴、y轴分别交于点A、C两点,点B的横坐标为2.
图1 图2
(1)求A、C两点的坐标和抛物线的函数关系式;
(2)点D是直线AC上方抛物线上任意一点,P为线段AC上一点,且S△PCD=2S△PAD ,求点P的坐标;
(3)如图2,另有一条直线y=-x与直线AC交于点M,N为线段OA上一点,∠AMN=∠AOM.点Q为x轴负半轴上一点,且点Q到直线MN和直线MO的距离相等,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A(,1)在射线OM上,点B(,3)在射线ON上,以AB为直角边作Rt△ABA1,以BA1为直角边作第二个Rt△BA1B1,以A1B1为直角边作第三个Rt△A1B1A2,…,依此规律,得到Rt△B2018A2019B2019,则点B2019的纵坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:
① 4ac<b2;② 方程ax2+bx+c=0的两个根是;③ 3a+c>0;④ 当y>0时,x的取值范围是-1≤x<3;⑤ 当x<0时,y随x增大而增大;
其中结论正确有__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.
(1)判断∠ABE与∠ACD的数量关系,并说明理由;
(2)求证:过点A、F的直线垂直平分线段BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为( )
A. 4 B. 6 C. 3 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题6分)为了参加中考体育测试,甲,乙,丙三位同学进行足球传球训练。球从一个人
脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传三次。
(1)求请用树状图列举出三次传球的所有可能情况;
(2)传球三次后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国庆节期间,某文具店平均每天可卖出300张贺卡,卖出1张贺卡的利润是1元.经调查发现,零售单价每降0.1元,每天可多卖出100张贺卡.为了使每天获取的利润更多,该店决定把零售单价下降元.
(1)零售单价下降元后,该店平均每天可卖出___________张贺卡,每张贺卡的利润为___________元;(用含的式子表示)
(2)在不考虑其他因素的条件下,该店希望每天卖贺卡获得的利润是420元,并且能卖出更多的贺卡赢得市场,应定为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,演绎推理的过程称为证明,证明的出发点和依据是基本事实.证明三角形全等的基本事实有:两边及其夹角分别相等的两个三角形全等,两角及其夹边分别相等的两个三角形全等,三边分别相等的两个三角形全等.
(1)请选择利用以上基本事实和三角形内角和定理,结合下列图形,证明:两角分别相等且其中一组等角的对边相等的两个三角形全等.
(2)把三角形的三条边和三个角统称为三角形的六个元素.如果两个三角形有四对对应元素相等,这两个三角形一定全等吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com