精英家教网 > 初中数学 > 题目详情

【题目】某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的倍;甲、乙两队合作完成工程需要天;甲队每天的工作费用为元、乙队每天的工作费用为元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?

【答案】甲工程队, 30000元.

【解析】分析:应求出甲乙工程队的工效.时间明显,应根据工作总量来列等量关系.关键描述语是:甲、乙两队合作完成工程需要20天.等量关系为:甲20天的工作量+20天的工作量=1,然后分情况分析后比较所需费用.

本题解析:设甲队单独完成需x天,则乙队单独完成需要2x天,

根据题意得

解得x=30

经检验,x=30是原方程的解,且x=30,2x=60都符合题意。

∴应付甲队30×1000=30000(元).

应付乙队30×2×550=33000(元).

∵30000<33000,所以公司应选择甲工程队。

答:公司应选择甲工程队,应付工程总费用30000元。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线ABx轴交于点A10),与y轴交于点B0﹣2).

1)求直线AB的解析式;

2)若直线AB上的点C在第一象限,且SBOC=2,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3分)如图,坐标原点O为矩形ABCD的对称中心,顶点A的坐标为(1,t),ABx轴,矩形A′B′C′D′与矩形ABCD是位似图形,点O为位似中心,点A′,B′分别是点A,B的对应点,.已知关于x,y的二元一次方程(m,n是实数)无解,在以m,n为坐标(记为(m,n)的所有的点中,若有且只有一个点落在矩形A′B′C′D′的边上,则kt的值等于(

A. B.1 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知平行四边形ABCD中,对角线AC,BD交于点O,EBD延长线上的点,且△ACE是等边三角形.

(1)求证:四边形ABCD是菱形;

(2)若∠AED=2EAD,求证:四边形ABCD是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】推理填空:如图:

______ ______ 内错角相等,两直线平行

______ ______ 同旁内角互补,两直线平行

______ ______ 时,

两直线平行,同旁内角互补

______ ______ 时,

两直线平行,同位角相等

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程组:

(1) (2) (3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为

(1)求口袋中黄球的个数;

(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;

(3)现规定:摸到红球得5分,摸到黄球得3分,摸到蓝球得2分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CN是等边的外角内部的一条射线,点A关于CN的对称点为D,连接ADBDCD,其中ADBD分别交射线CN于点EP

(1)依题意补全图形;

2)若,求的大小(用含的式子表示);

3)用等式表示线段 之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(齐齐哈尔中考)如图所示,在四边形ABCD.

(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;

(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O中心对称.

(3)四边形A1B1C1D1与四边形A2B2C2D2是否对称,若对称请在图中画出对称轴或对称中心.

查看答案和解析>>

同步练习册答案