精英家教网 > 初中数学 > 题目详情

【题目】已知:如图所示,∠AOB:∠BOC=3:2,OD平分∠BOC,OE平分∠AOC,且∠DOE=36°,求∠BOE的度数.

【答案】解:设∠AOB=3x,∠BOC=2x.
则∠AOC=∠AOB+∠BOC=5x.
∵OE是∠AOC的平分线,OD是∠BOC的平分线,
∴∠COE═ ∠AOC= x∠COD= ∠BOC=x,
∴∠DOE=∠COE﹣∠COD= x﹣x= x,
∵∠DOE=36°,
x=36°,
解得,x=24°,
∴∠BOE=∠COE﹣∠COB= ×24﹣2×24=12°
【解析】根据已知∠AOB:∠BOC=3:2,设∠AOB=3x,∠BOC=2x,用含x的代数式表示出∠AOC,再根据角平分线的定义,用含x的代数式表示出∠COE,根据∠DOE=∠COE﹣∠COD,用含x的代数式表示出∠DOE,然后根据∠DOE=36°,求出x的值,即可得出结果。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】体育课上,对初三(1)的学生进行了仰卧起坐的测试,以能做24个为标准,超过次数用正数来表示,不足的次数用负数来表示,其中10名女学生成绩如下:

5

-2

-1

3

0

10

0

7

-5

-1

这10名女生的达标率为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】m+n=2mn=1,则m2+n2=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】-2+(-3)=( ) ( )
A.5
B.3
C.2
D.-5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC的顶点均在格点上,点A的坐标是(﹣3,﹣1).

(1)将△ABC沿y轴正方向平移3个单位得到△A1B1C1 , 画出△A1B1C1 , 并写出点B1坐标;
(2)画出△A1B1C1关于y轴对称的△A2B2C2 , 并写出点C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果关于x的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是________.(写出所有正确说法的序号).

方程是倍根方程;

是倍根方程,则

若点在反比例函数的图像上,则关于的方程是倍根方程;

若方程是倍根方程,且相异两点都在抛物线上,则方程的一个根为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s).
(1)当动点P、Q同时运动2s时,则BP=cm,BQ=cm.
(2)当动点P、Q同时运动t(s)时,分别用含有t的式子表示;BP=cm,BQ=cm.
(3)当t为何值时,△PBQ是直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】-3+3=( )
A.0
B.6
C.3
D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.

(1)阅读填空

如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.

理由:连接AH,EH.

∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.

∵DH⊥AE,∴∠ADH=∠EDH=90°

∴∠HAD+∠AHD=90°

∴∠AHD=∠HED,∴△ADH∽

,即DH2=AD×DE.

又∵DE=DC

∴DH2= ,即正方形DFGH与矩形ABCD等积.

(2)操作实践

平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.

如图②,请用尺规作图作出与ABCD等积的矩形(不要求写具体作法,保留作图痕迹).

(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的 (填写图形名称),再转化为等积的正方形.

如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).

(4)拓展探究

n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n﹣1边形,…,直至转化为等积的三角形,从而可以化方.

如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).

查看答案和解析>>

同步练习册答案