【题目】如图,在平面直角坐标系中,直线与反比例函数的图像在第一象限交于点,在第三象限交于点 ,过 作 轴于,连接 .
(1)求反比例函数的解析式;
(2)求的面积;
(3)根据图象直接写出时自变量的取值范围.
【答案】(1);(2)6;(3)或
【解析】
(1)根据点A(2,n)在直线y1=2x-2上求出n的值即可得出反比例函数的解析式;
(2)作AF⊥x轴于点F,由A点坐标可得出AF的长,再取出直线y1=2x-2与x轴的交点E的坐标,根据S△ABD=S△ADE+S△BDE解答即可;
(3)直接根据两函数的图象即可得出y1>y2时自变量x的取值范围.
(1)直线与反比例函数的图像在第一象限交于点,
∴,
∴,
∴此反比例函数的解析式为;
(2)∵直线与反比例函数的图像在第一象限交于点,
在第三象限交于点,
∴.
∵轴于,
∴,,
作轴于点,
∵,
∴,
∵直线与轴相交于点,
∴,
∴,
∴;
(3) ∵, ,
由函数图像可知,当或是的图像在的上方,
∴当或时,
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2-12ax+36a-5的图象在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,则a的值为___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1)。
(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍画出图形。
(2)写出B、C两点的对应点B、C的坐标;
(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,点G在边DC的延长线上,AG交边BC于点E,交对角线BD于点F.
(1)求证:AF2=EFFG;
(2)如果EF=,FG=,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,平面直角坐标系中,O为坐标原点,二次函数的图象与x轴交于、B两点,与y轴交于点C;
(1)求c与b的函数关系式;
(2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE=DF,求此二次函数解析式;
(3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作于N,连接MN,且,当时,连接PC,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.
(1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为 ;
(2)请你在图中画出小亮站在AB处的影子;
(3)当小亮离开灯杆的距离OB=4.2m时,身高(AB)为1.6m的小亮的影长为1.6m,问当小亮离开灯杆的距离OD=6m时,小亮的影长是多少m?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论:
①抛物线经过点;
②方程有两个不相等的实数根;
③.
其中,正确结论的个数为( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象与x轴交于A(﹣2,0)、B(4,0)两点,且函数经过点(3,10).
(1)求二次函数的解析式;
(2)设这个二次函数的顶点为P,求△ABP的面积;
(3)当x为何值时,y≤0.(请直接写出结果)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com