精英家教网 > 初中数学 > 题目详情
17.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长为6m(精确到1m)

分析 可设原正方形的边长为xm,则剩余的空地长为(x-1)m,宽为(x-2)m.根据长方形的面积公式列出方程,求解即可.

解答 解:设原正方形的边长为xm,依题意得:
(x-1)(x-2)=18,
解得:x1≈6,x2≈-3(舍去),
答:原正方形空地的边长为6m;
故答案为:6.

点评 本题考查了一元二次方程的应用,应熟记长方形的面积公式,另外求得剩余的空地的长和宽是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

7.如图,线段BD为锐角△ABC上AC边上的中线,E为△ABC的边上的一个动点,则使△BDE为直角三角形的点E的位置有(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.请阅读下列材料,并完成相应的任务:
阿基米德是有史以来最伟大的数学家之一,阿基米德的折弦定理是其推导出来的重要定理之一.
阿基米德折弦定理:如图,AB和BC是⊙O的两条弦(即折线ABC是⊙O的一条折弦),BC>AB,M是$\widehat{ABC}$的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.
证明:如图,在CB上截取CG=AB,连接MA,MB,MC和MG.
∵M是$\widehat{ABC}$的中点,
∴MA=MC.

请按照上面的证明思路,写出该证明的剩余部分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.先化简,再求值
(1)-2a2+3a-(-3a2-6a+1)+3,其中a=2.
(2)$\frac{1}{2}$x-2(x-$\frac{1}{3}$y2)-(-$\frac{3}{2}$x+$\frac{1}{3}$y2),其中x=-2,y=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.两个等边三角形一定全等B.形状相同的两个三角形全等
C.面积相等的两个三角形全等D.全等三角形的面积一定相等

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,△ABC中,AC=BC,∠ACB=90°,点D是AB上一点,∠ACD=15°,点B、点E关于CD对称,连BE交CD于点H,交AC于点G,连DE交AC于点F.则∠ADF=60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知抛物线y=x2+(b-1)x+c经过点P(-1,-2b).
(1)求b+c的值;
(2)如果b=3,求这条抛物线的顶点坐标;
(3)如图所示,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P为和谐点,例如点(1,1),(-$\frac{1}{3}$,-$\frac{1}{3}$),(-$\sqrt{2}$,-$\sqrt{2}$),…都是和谐点,若二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个和谐点($\frac{3}{2}$,$\frac{3}{2}$),当0≤x≤m时,函数y=ax2+4x+c-$\frac{3}{4}$(a≠0)的最小值为-3,最大值为1,则m的取值范围是2≤m≤4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.要使方程组$\left\{\begin{array}{l}{2x+ay=16}\\{x-2y=0}\end{array}\right.$有正整数解,求整数a的值.

查看答案和解析>>

同步练习册答案