精英家教网 > 初中数学 > 题目详情
8.请阅读下列材料,并完成相应的任务:
阿基米德是有史以来最伟大的数学家之一,阿基米德的折弦定理是其推导出来的重要定理之一.
阿基米德折弦定理:如图,AB和BC是⊙O的两条弦(即折线ABC是⊙O的一条折弦),BC>AB,M是$\widehat{ABC}$的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.
证明:如图,在CB上截取CG=AB,连接MA,MB,MC和MG.
∵M是$\widehat{ABC}$的中点,
∴MA=MC.

请按照上面的证明思路,写出该证明的剩余部分.

分析 首先证明△MBA≌△MGC(SAS),进而得出MB=MG,再利用等腰三角形的性质得出BD=GD,即可得出答案.

解答 解:如图,在CB上截取CG=AB,连接MA,MB,MC和MG.
∵M是$\widehat{ABC}$的中点,
∴MA=MC.
在△MBA和△MGC中$\left\{\begin{array}{l}{BA=GC}\\{∠A=∠C}\\{MA=MC}\end{array}\right.$,
∴△MBA≌△MGC(SAS),
∴MB=MG,
又∵MD⊥BC,
∴BD=GD,
∴DC=GC+GD=AB+BD.

点评 此题主要考查了全等三角形的判定与性质以及等腰三角形以及等边三角形的性质,正确作出辅助线利用全等三角形的判定与性质解题是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.解不等式组$\left\{\begin{array}{l}{\frac{x-3}{4}+6≥x①}\\{4-5(x-2)<4(2-x)②}\end{array}\right.$,并判断x=3$\sqrt{5}$是不是这个不等式组的解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.矩形ABCD中,AB=4,AD=6,点E是BC的中点,过点D作DF⊥AE于点F,求cos∠ADF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.一位篮球运动员投篮,球沿抛物线y=-$\frac{1}{5}$x2+$\frac{7}{2}$运行,然后准确落入篮筐内,已知篮筐的中心距离底面的距离为3.05m.
(1)求球在空中运行的最大高度为多少m?
(2)如果该运动员跳投时,球出手离地面的高度为2.25m,要想投入篮筐,则问他距离蓝筐中心的水平距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.将抛物线y=-4x2先向左平移2个单位长度,再向下平移5个单位长度,所得到的新的抛物线的解析式为(  )
A.y=-4(x-2)2-5B.y=-4(x+2)2-5C.y=-4(x-5)2+2D.y=-4(x+5)2-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,直线AB:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),平行于y轴的直线x=2交AB于点D,交x轴于点E,点P是直线x=2上一动点,且在点D的上方,设P(2,n).
(1)求直线AB的表达式和点A的坐标;
(2)求△ABP的面积(用含n的代数式表示);
【平行班】
(3)当S△ABP=4时,以PB为直角边在第一象限作等腰直角三角形BPC,直接写出点C的坐标.
【双语班,实验班】
(4)当S△ABP=S△BPC时,以PB为边在第一象限作等腰直角三角形BPC,直接写出点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图是由四个大小相同的正方体组成的几何体,那么它从左面看的形状是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长为6m(精确到1m)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点).过点P分别作两坐标轴的垂线,且与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是y=-x+5.

查看答案和解析>>

同步练习册答案