精英家教网 > 初中数学 > 题目详情

【题目】如图,在等边三角形中,在边上取两点,使.若 则以为边长的三角形的形状为(

A.锐角三角形B.直角三角形C.钝角三角形D.的值而定

【答案】C

【解析】

将△ABM绕点B顺时针旋转60得到△CBH.连接HN.想办法证明∠HCN120HNMNx即可解决问题;

将△ABM绕点B顺时针旋转60得到△CBH.连接HN

∵△ABC是等边三角形,

∴∠ABC=∠ACB=∠A60

∵∠MON30

∴∠ABM+∠CBN30

∴∠NBH=∠CBH+∠CBN30

∴∠NBM=∠NBH

BMBHBNBN

∴△NBM≌△NBH

MNNHx

∵∠BCH=∠A60CHAMn

∴∠NCH120

xmn为边长的三角形△NCH是钝角三角形,

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②当x>﹣1时,y随x增大而减小;③a+b+c<0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2; ⑤3a+c<0.其中正确结论的个数是( )

A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+2mx+m2-1=0.
(1)不解方程,判别方程的根的情况;
(2)若方程有一个根为3,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0),二次函数 的图象抛物线经过A、C两点.

(1)求该二次函数的表达式;
(2)F,G分别为x轴、y轴上的动点,首尾顺次连接D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;
(3)抛物线上是否存在点P,使△ODP的面积为8?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形BEDG和矩形BNDQ中,BE=BNDE=DN

1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;

2)若菱形ABCD的周长为20BE=3,求矩形BEDG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABCD,∠B70°,∠BCE20°,∠CEF130°,请判断ABEF的位置关系,并说明理由.

解:   ,理由如下:

ABCD

∴∠B=∠BCD,(   

∵∠B70°,

∴∠BCD70°,(   

∵∠BCE20°,

∴∠ECD50°,

∵∠CEF130°,

   +   180°,

EF   ,(   

ABEF.(   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.
(1)求证:四边形EFGH是平行四边形;
(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线a b被直线c所截,现给出下列四种条件:

①∠2=∠6 ②∠2=∠8 ③∠1+∠4180° ④∠3=∠8,其中能判断是ab的条件的序号是(

A. ①② B. ①③ C. ①④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机.是无理数的证明如下:

假设是有理数,那么它可以表示成是互质的两个正整数).于是,所以,.于是是偶数,进而是偶数.从而可设,所以,于是可得也是偶数.这与是互质的两个正整数矛盾,从而可知是有理数的假设不成立,所以,是无理数.这种证明是无理数的方法是( )

A.综合法B.反证法C.举反例法D.数学归纳法

查看答案和解析>>

同步练习册答案