精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,对于点P(xy),若点Q的坐标为(ax+yx+ay),其中a为常数,则称点Q是点P“a级关联点例如,点P(14)“3级美联点Q(3+41+3),即Q(713).

(1)已知点A(26)级关联点是点,求点的坐标。

(2)已知点M(m12m)3级关联点”M’位于y轴上.求点M’的坐标。

【答案】(1) (5,1); (2)(0,-16).

【解析】

1)根据关联点的定义,结合点的坐标即可得出结论.
2)根据关联点的定义和点Mm-12m)的“-3级关联点”M′位于y轴上,即可求出M′的坐标.

解(1)因为点A-26)的级关联点是点,所以∴A1-2×+6-2+×6),即 (51);

2)因为点Mm- 12m)的3级关联点M’-3mm-1+2m·m-1+-3·2m.又因为点M’位于y轴上,所以-3m-1+2m=0 解得m=3. 所以m-1+-3·2m=-16

所以M’0-16

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是( )
A. =15
B. =
C. =15
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DEAB于点F,AED=2CED,点GDF的中点,若BE=2,DF=8,则AB的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,PMQN分别是ABAC的垂直平分线,∠BAC100°那么∠PAQ等于(  )

A. 50° B. 40° C. 30° D. 20°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点(小正方形的顶点叫格点)上,连接BD.

(1)利用格点在图中画出ABDAD边上的高,垂足为H.

(2)①画出将ABD先向右平移2格,再向上平移2格得到的A1B1D1

②平移后,求线段AB扫过的部分所组成的封闭图形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】[探究]如图,∠AFH和∠CHF的平分线交于点OEG经过点O且平行于FH,分别与ABCD交于点EG.

(1)若∠AFH=60°,∠CHF=50°,则∠EOF= °,∠ FOH= °

(2)若∠AFH+CHF= 100°,求∠FOH的度数.

(3)当∠FOH=_____ ° AB//CD.

[拓展]如图,∠AFH和∠CHI的平分线交于点OEG经过点O且平行于FH,分别与ABCD交于点EG.若∠AFH+CHF=a,求∠FOH的度数. (用含a的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,…….照此规律,点P第100次跳动至点P100的坐标是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.
(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;
(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,解答下面的问题:

我们知道方程有无数个解,但在实际生活中我们往往只需求出其

正整数解.

例:由,得:,(xy为正整数)

,则有.又为正整数,则为正整数.由2与3互质,可知:x为3的倍数,从而x=3,代入∴2x+3y=12的正整数解为

问题:

(1)请你写出方程的一组正整数解:      .

(2)若为自然数,则满足条件的x值为      .

(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?

查看答案和解析>>

同步练习册答案