精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,PMQN分别是ABAC的垂直平分线,∠BAC100°那么∠PAQ等于(  )

A. 50° B. 40° C. 30° D. 20°

【答案】D

【解析】

由在ABC中,PMQN分别是ABAC的垂直平分线,根据线段垂直平分线的性质,可求得∠PAB=B,∠CAQ=C,又由∠BAC=110°,易求得∠PAB+CAQ的度数,继而求得答案.

∵在ABC中,PMQN分别是ABAC的垂直平分线,
PA=PBAQ=CQ
∴∠PAB=B,∠CAQ=C
∵∠BAC=100°
∴∠B+C=180°-BAC=80°
∴∠PAB=CAQ=80°
∴∠PAQ=BAC-(∠PAB+CAQ=100°-80°=20°
故答案为:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示的图形中,所有四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形边长为7cm,设正方形A、B、C、D、E、F面积分别为SA、SB、SC、SD、SE、SF,则下列各式正确有()个.

① SA+SB+SC+SD=49;② SE+SF=49;③ SA+SB+SF=49;④ SC+SD+SE=4

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,ABBCECD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点EMEAFBC于点M,连接AMBD交于点N,现有下列结论:

AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④点N为△ABM的外心.其中正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条公路上顺次有ABC三地,甲、乙两车同时从A地出发,分别匀速前往B地,C地,甲车到达B地停留一段时间后原速原路返回,乙车到达C地后立即原速原路返回,乙车比甲车早1小时返回A地,甲、乙两车各自行驶的路程y(千米)与时间x(时)(从两车出发时开始计时)之间的图象如图所示.

1)在上述变化过程中,自变量是   ,因变量是   

2)乙车行驶的速度为   千米/小时;

3)甲车到达B地停留了多久?B地与C地之间的距离为多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,则△ABF的面积为( )

A. 10 B. 8 C. 6 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点P(xy),若点Q的坐标为(ax+yx+ay),其中a为常数,则称点Q是点P“a级关联点例如,点P(14)“3级美联点Q(3+41+3),即Q(713).

(1)已知点A(26)级关联点是点,求点的坐标。

(2)已知点M(m12m)3级关联点”M’位于y轴上.求点M’的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E

使AE∥BC,连接AE。

(1)求证:四边形ADCE是矩形;

(2)①若AB=17,BC=16,则四边形ADCE的面积=

②若AB=10,则BC= 时,四边形ADCE是正方形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,在平面直角坐标系中,一次函数yx+3x轴于点A,交y轴于点B,点C是点A关于y轴对称的点,过点Cy轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.

(1)求点AB的坐标.

(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.

(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得SCPQ2SDPQ,若存在,请求出对应的点Q坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案