精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,ABBCECD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点EMEAFBC于点M,连接AMBD交于点N,现有下列结论:

AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④点N为△ABM的外心.其中正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】解:ECD边的中点,DE=CE,又∵∠D=∠ECF=90°AED=∠FEC∴△ADE≌△FCEAD=CFAE=FE,又MEAFME垂直平分AFAM=MF=MC+CFAM=MC+AD,故正确;

AB=BC时,即四边形ABCD为正方形时,设DE=EC=1BM=a,则AB=2BF=4AM=FM=4﹣a,在Rt△ABM中,22+a2=4﹣a2,解得a=1.5,即BM=1.5由勾股定理可得AM=2.5DE+BM=2.5=AM,又ABBCAM=DE+BM不成立,故错误;

MEFFECMFEC2=CM×CF,又EC=DEAD=CFDE2=ADCM,故正确;

∵∠ABM=90°AMABM的外接圆的直径,BMADBMAD时, 1N不是AM的中点,N不是ABM的外心,故错误.

综上所述,正确的结论有2个,故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A23),点B﹣21),在x轴上存在点PAB两点的距离之和最小,则P点的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是( )
A. =15
B. =
C. =15
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,在ABC中,ABAC,分别以ABBC为边作等边ABE和等边BCD,连结CEAD

1)求证:∠ACD=∠ABD

2)判断DCCE的位置关系,并加以证明;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:

(1)坡顶A到地面PQ的距离;
(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DEAB于点F,AED=2CED,点GDF的中点,若BE=2,DF=8,则AB的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,PMQN分别是ABAC的垂直平分线,∠BAC100°那么∠PAQ等于(  )

A. 50° B. 40° C. 30° D. 20°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.
(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;
(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.

查看答案和解析>>

同步练习册答案