精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DEAB于点F,AED=2CED,点GDF的中点,若BE=2,DF=8,则AB的长为______

【答案】2

【解析】

先证明∠ADE=∠DEC,设∠CED=x,则∠AED=2x,∠ADE=x,证明∠AED=∠AGE=2x,则AE=AG=4,由勾股定理计算AB的长即可

解:∵四边形ABCD是矩形,
∴AD∥BC,∠BAD=90°,
∴∠ADE=∠DEC,
设∠CED=x,则∠AED=2x,∠ADE=x,
Rt△FAD中,GDF的中点,DF=8,
∴AG=DG=4,
∴∠GAD=∠ADE=x,
∴∠AGE=∠GAD+∠ADE=2x,
∴∠AGE=∠AED=2x,
∴AE=AG=4,
由勾股定理得:AB==2

故答案为: 2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE

1)如图1,若∠COF=34°,则∠BOE=______

2)如图1,若∠BOE=80°,则∠COF=______

3)若∠COF=m°,则∠BOE=______度;∠BOE与∠COF的数量关系为______

4)当∠COE绕点O逆时针旋转到如图2的位置时,(3)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AD是△ABC的高,∠BAC=60°,BD=2CD=2,试求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,ABBCECD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点EMEAFBC于点M,连接AMBD交于点N,现有下列结论:

AM=AD+MC;②AM=DE+BM;③DE2=ADCM;④点N为△ABM的外心.其中正确的个数为(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条公路上顺次有ABC三地,甲、乙两车同时从A地出发,分别匀速前往B地,C地,甲车到达B地停留一段时间后原速原路返回,乙车到达C地后立即原速原路返回,乙车比甲车早1小时返回A地,甲、乙两车各自行驶的路程y(千米)与时间x(时)(从两车出发时开始计时)之间的图象如图所示.

1)在上述变化过程中,自变量是   ,因变量是   

2)乙车行驶的速度为   千米/小时;

3)甲车到达B地停留了多久?B地与C地之间的距离为多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点P(xy),若点Q的坐标为(ax+yx+ay),其中a为常数,则称点Q是点P“a级关联点例如,点P(14)“3级美联点Q(3+41+3),即Q(713).

(1)已知点A(26)级关联点是点,求点的坐标。

(2)已知点M(m12m)3级关联点”M’位于y轴上.求点M’的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y=﹣ x2 x+c与x轴相交于A、B两点(B点在A点的左侧),与y轴相交于C点,且AB=10.

(1)求这条抛物线的解析式;
(2)如图2,D点在x轴上,且在A点的右侧,E点为抛物线上第二象限内的点,连接ED交抛物线于第二象限内的另外一点F,点E到y轴的距离与点F到y轴的距离之比为3:1,已知tan∠BDE= ,求点E的坐标;
(3)如图3,在(2)的条件下,点G由B出发,沿x轴负方向运动,连接EG,点H在线段EG上,连接DH,∠EDH=∠EGB,过点E作EK⊥DH,与抛物线相应点E,若EK=EG,求点K的坐标.

查看答案和解析>>

同步练习册答案