精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AD是△ABC的高,∠BAC=60°,BD=2CD=2,试求AB的长.

【答案】

【解析】

过点B作BE⊥AC于E,设AE=x,则BE=x,AB=2x,CE=,再根据勾股定理可知:AB2-BD2=AD2=AC2-CD2,将各值代入,即可求出x的值,进而求出AB的长.

解:过点B作BE⊥AC于E,则BE=AE,设AE=x,则BE=x,AB=2x,

∵BD=2CD=2,

∴BD=2,CD=1,BC=3.

∴CE==,

由AB2﹣BD2=AD2=AC2﹣CD2,得4x2-4=(x+)2-1,

∴4x2-4=8-2x2+2x,3x2-6=x,9x4-36x2+36=9x2-3x4,

4x4﹣15x2+12=0,

∴x2=,又

∴x=不合题意,

故x=,∴AB==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场销售某种商品,原价560元.随着不同幅度的降价(元),日销售量(件)发生相应变化,关系如图所示:

1)根据图像完成下表

降价/

5

10

15

日销售量/

780

840

870

2)售价为560元时,日销售量为多少件.

3)如果该商场要求日销售量为1110件,该商品应降价多少元.

4)设该商品的售价为元,日销售量为件,求之间的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点D在反比例函数y= 的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=

(1)求反比例函数y= 和直线y=kx+b的解析式;
(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;
(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个小组同时从甲地出发,匀速步行到乙地,甲乙两地相距7500米,第一组的步行速度是第二组的1.2倍,并且比第二组早15分钟到达乙地.设第二组的步行速度为x千米/小时,根据题意可列方程是( )
A. =15
B. =
C. =15
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.

1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)

2)小明家与小刚家相距多远?

3)若货车每千米耗油1.5升,那么这辆货车此次送货共耗油多少升

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是(
A. =
B. =
C. =
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,在ABC中,ABAC,分别以ABBC为边作等边ABE和等边BCD,连结CEAD

1)求证:∠ACD=∠ABD

2)判断DCCE的位置关系,并加以证明;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DEAB于点F,AED=2CED,点GDF的中点,若BE=2,DF=8,则AB的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,…….照此规律,点P第100次跳动至点P100的坐标是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

查看答案和解析>>

同步练习册答案